|
设
备
管
理
网
s
b
g
l
.
j
d
z
j
.
c
o
m
|
 |
DEB直接能量平衡控制策略及其应(1) |
|
|
DEB直接能量平衡控制策略及其应(1) |
|
作者:佚名 文章来源:不详 点击数: 更新时间:2008-9-23 16:27:30  |
|
摘 要:本文以某电厂2×300MW机组DEB设计和运行情况为背景,阐述并分析了采用直接能量平衡策略的协调控制系统技术原理、工程实现、过程实际响应以及运行效果。结果表明:DEB协调控制策略的控制目标直接、明确,使用方便、灵活,而且具有适应性强、稳定性好等特点。
关键词:直接能量平衡;协调控制;火电机组
0前言
大型火力发电机组由于机组容量大、运行参数高,若运行操作不当将对机组本身甚至电网的安全带来很大的危害,故对自动控制的要求和依赖越来越高。发电机组自动控制的最终目标是安全快速地满足电网的负荷需求并保证电力品质,由于组成火力发电机组的锅炉和汽轮机对负荷响应特性的差异很大,所以在设计机组级控制时必须充分考虑这两个对象的不同特性,使锅炉和汽轮机协调地运转,以机组实际最大能力来满足电网的要求。协调控制系统CCS(Coordinated Control System)的任务是协调锅炉和汽轮机两个不同的工艺系统共同来满足电力负荷需求。因此,协调控制系统的设计应将锅炉和汽轮机作为一个整体来考虑,使机组在实际能力下,能最大限度地满足电网要求的发电数量(功率)和质量(频率),确保发电机组安全、稳定、经济地运行,这是协调控制的基本要求。
协调控制系统在理论上可以有许多方法来实现,但对于一个特定的发电机组来说,当主设备和工艺系统确定以后,应该选择一种最适合该机组特定条件的技术方案作为控制系统设计的基本策略。随着分散控制系统(DCS)应用的不断成熟,为火电机组实现复杂的协调控制创造了技术和物质的基础。本文阐述的是DEB直接能量平衡控制系统的设计思路、控制策略以及机组在协调控制方式下的实际负荷响应情况,采用的系统硬件是MAX1000分散控制系统。
1 DEB原理分析[1]
直接能量平衡(Direct Energy Balance;DEB)协调控制系统是由美国原Leeds & Northrup公司创立的专有技术(现由美国metsoMAX公司继承此项技术,上海自动化仪表股份有限公司通过技术引进获得使用许可)。其著名的表达式为[1]:
(1)
式中PTS 为机前压力设定值;P1 为汽机一级压力;PT 为机前压力; PD 为汽包压力;Cb为锅炉蓄热系数。在等式的左边是汽机的能量需求信号,等式的右边是锅炉的热量信号。
DEB实质上是以锅炉跟随为基础的协调控制,汽机侧控制功率,同时以汽机的能量需求作为锅炉负荷指令,直接同锅炉的热量信号相平衡,而满足这种平衡的控制手段是调节输入锅炉的燃料量,因此在燃料调节器入口代表燃料量的热量信号直接同汽机能量需求信号相比较。
在动态的调节过程中,比例积分作用的燃料调节器通过反馈调节总是要让入口偏差趋向于零,故此时燃料调节器入口的误差ef为:
由上述关系可知,能量需求信号与热量信号平衡的结果能使机前压力PT自然地维持在设定值PTS,从而证明了DEB控制策略确实能保持机炉的能量平衡。根据DEB固有的维持机前压力为定值的特性,可以取消机前压力校正调节器[2]。
2 DEB功能设计
一个完整实用的协调控制系统,设计时必须考虑在各种工况下实现系统之间和设备之间的目标负荷与实际能力的匹配,具体包括:①电网要求负荷与机组出力的匹配;②汽机要求能量与锅炉出力的匹配;③锅炉要求出力与辅机能力的匹配。当上述“要求”和“能力”之间的关系匹配合适时,机组的运行是安全经济的,且控制系统是稳定的。图1所示为应用直接能量平衡原理的单元机组协调主控示意框图。
 图1 直接能量平衡协调主控示意框图
整个协调主控系统是由机组指令处理回路、汽机主控回路和锅炉主控回路三个部分组成。下面分别阐述采用直接能量平衡策略的协调控制系统各个回路的工程实现。
2.1机组指令处理
机组指令处理回路负责实时地向机炉下达功率指令,最大限度地满足电网对机组的负荷要求,当机组运行异常时及时地对机组目标指令实施限制,避免异常工况进一步扩大,在保证安全的前提下以机组实际能力继续承担发电负荷。机组指令处理回路的具体任务是:
(1) 根据机组运行的状态及电网负荷控制的要求,选择适合机组当时条件的负荷控制指令方式。
(2) 对目标指令进行处理,使之与机炉的动态特性及负荷变化能力相适应,生成实际功率指令。
机组负荷指令方式有二种,即运行员设定的手动负荷指令和电网AGC系统来的自动调度指令,由T1选择机组负荷指令的来源。T1 提供了机组和电网AGC系统的接口,当机组运行于协调控制方式且AGC指令和运行员指令跟踪良好时,若电网调度所要求机组接受AGC控制,机组收到AGC请求命令后,运行人员在DCS的CRT“机组主控”画面上按下AGC按钮,T1 就选择AGC指令。而在AGC方式时,运行员可随时将机组指令切换成人工手动指令。机组指令处理回路在完成指令选择的同时还承担向电网AGC系统发送机组实时能力和状态信息,配合网控中心对机组实现遥测、遥控。
当T1 选择了指令的来源和控制方式后,再综合进频差信号就形成了机组的目标负荷指令。机组指令处理回路的下一个任务是将目标指令处理成机组可接受的实际功率指令,使机组的实际出力在设备许可的能力下匹配电网要求。
当连续运行的机组某些设备或系统发生异常,出力或稳定出了问题,机组就不可能达到初始的负荷变化幅度,此时设备及过程限制逻辑计算出机组的实时负荷能力,通过指令闭锁逻辑回路对目标指令进行实时的方向闭锁,将指令限制在机组能力允许的范围内,同时根据不同情况修正指令的变化率限制值。
当设备故障或过程出现问题,发生机组侧强制增/减负荷时,此时机组指令处理回路将使指令跟踪实发功率,使得强制增/减负荷过程结束后不发生指令扰动。
2.2汽机主控制
从图1中汽机主控回路可以看出,这是个功率-压力串级加指令前馈控制回路。汽机直接控制功率,故系统对功率指令的响应速度快,而功率指令的前馈控制所起的加速调节作用,有利于系统克服中间再热机组的再热器容积滞后,更进一步提高了响应速度。在功率串级回路的输出通过T2并列了一个机前压力调节器,当T2 选择了机前压力调节器时,系统就由汽机调功率转成汽机调压力,当汽机控制汽压时机组的功率由锅炉决定。T2 的切换在正常工况时由协调方式控制逻辑决定。
汽机主控回路和汽机的控制接口是汽机数字电液控制器(DEH),因DEH具有良好的汽机阀门管理功能(阀门特性线性化处理),所以机组的功率控制回路可获得良好的调节品质。汽机主控回路与DEH的控制接口采用脉冲调频的方式,用硬接线连接。采用脉冲调频的方式接口具有很高的安全性,即使在控制信号连接线短路的情况下,汽机控制也不会误动作。
2.3锅炉主控制
由图1可见,在锅炉主控回路没有机前压力调节器,汽机的能量需求信号直接作为锅炉指令以前馈的方式加入锅炉控制。当汽机的功率控制作用到汽机调门后,能量需求信号立刻要求燃料调节器调整锅炉的燃料输入,使锅炉的输入与当时的汽机需求相匹配。这个匹配(平衡)过程虽然直接又迅速,然而锅炉的能量转换过程存在较大的滞后,为了克服这个滞后加快锅炉的响应速度,在DEB的工程设计中对能量指令(需求)进行动态补偿
|
|
资讯录入:admin 责任编辑:admin |
|
|
上一篇资讯: DEB直接能量平衡控制策略及其应(2)
下一篇资讯: 运行方式改变造成母差保护误动(续) |
|
|
【字体:小 大】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】 |
|
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) |
|
|
|
|