摘要: 介绍了钢铁厂配电网系统和用电设备的节电运行技术及应用实例,分析了低电压偏差运行技术、变压器经济运行技术、配电网重构技术、电加热设备的配电功率控制技术的节电原理。特别指出在进行配电网重构等节电运行计算时应以节电指标作为目标函数,安全运行、电能质量指标作为约束条件,这样会得到较好的结果。
关键词: 节电运行;低电压偏差;配电网重构
1 概述
钢铁行业是高耗能行业,2000年钢铁工业总能耗占全国总能耗的10%,用电占全国总用电量的8.36%左右;大型钢铁企业能源成本占总生产成本的30%左右,其中电能成本占总生产成本的10%左右;2000年全国重点企业吨钢可比能耗为784kg标煤/t,综合耗电752kWh/t,日本吨钢可比能耗为646kg标煤/t,我国计划2010年、2020年吨钢可比能耗目标分别为685、640kg标煤/t,钢铁企业能耗将达到国际先进水平[1]。
钢铁工业节能措施主要有:①调整企业组织结构、产品品种结构和生产工艺结构;②改造或更新用电设备和生产工艺;③推行供配电系统和用电设备的节电运行技术。本文主要介绍供配电系统和用电设备的节电运行技术。
节电运行技术本质上是一种投资少、收益高的软件技术。配电网和用电设备节电运行技术主要包括低电压偏差运行技术、变压器经济运行技术、配电网重构技术、电加热设备的配电功率控制技术。节电运行技术是对电网的结构,电网和用电设备的运行方式、运行参数进行优化的技术,本质是一种软件技术。推广节电运行技术不像推广节电设备那样需要较大的资金支持,它推广的是先进的节电技术理念。因此,推广节电运行技术是一项投资少收益高的工作。
2 低电压偏差运行技术
2.1 历史背景
20世纪80年代,由于供电不足,输配电技术落后,电压波动很大,特别是往负方向波动大,用户为了保证设备的正常供电,在供电设计上不得不把设备终端电压调得很高。到了21世纪,电力充足,电压稳定,但很多用户还保留原来设计思想,致使我国配电系统中电力设备的运行电压普遍偏高,使有功损耗和无功损耗大大增加,因此大力推广配电网和用电设备的低电压偏差运行技术势在必行。
2.2 低电压偏差运行技术的节电原理
低电压偏差运行技术的节电技术的依据是:钢铁厂负荷中约75%是电动机负荷和电加热负荷及空调负荷,而这些负荷功率的静态特性表明,当电压降低时,钢铁厂有功功率变化很少,而无功功率变化很大。
负荷无功(有功)电压灵敏度的静态模型可以表示为如下的指数形式:

钢铁工业主要用电设备的静态特性参数及U/U0由1.05降到1.0时,P/P0和Q/Q0变化如表1所示[2]:
表1 钢铁工业主要用电设备的静态特性参数及
P/P0和Q/Q0随U/U0的变化
设 备
工业
电动机
泵、风扇
和其他
电动机
电弧炉
中央
空调
室用
空调
炼炉
鼓风机
工业
电视
荧光
灯
Pu
0.05
0.08
2.3
0.2
0.5
0.08
2.0
1.0
Qu
0.6
1.6
4.6
2.2
2.5
1.6
5.2
3.0
P/P0
U/U0
=1.05
1.002
1.004
1.119
1.01
1.025
1.004
1.103
1.050
U/U0
=1.0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
Q/Q0
U/U0
=1.05
1.030
1.081
1.252
1.113
1.130
1.081
1.289
1.158
U/U0
=1.0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
由表1可见,降低运行电压,有功功率变化较小,但无功变化较大。
2.3 应用案例
2005年,对年产1000万t钢的某大型钢铁公司进行全面的电能质量及安全经济运行评估,该公司6、10、35kV供电母线电压普遍偏高+5%~+10%,电压波动大都在5%以内,因此建议将电压偏差调整到+1%~-1%。调整后,全公司无功损耗减小约50Mvar,功率因数提高了,无功当量按照0.01kW/kvar计算,照明设备、线路及变压器有功损耗也因此减少500kW,并减少50Mvar无功补偿设备(价值500万元)的投入,设无功补偿设备的有功损耗为补偿容量的0.5%,则可减少无功设备的损耗约250kW。总有功损耗减少750kW,若全年按7000h运行时间计算,则全年可节电500万kWh以上。
3 变压器的经济运行技术
3.1 钢铁厂配电变压器存在巨大节电潜力
1000万t钢铁厂用电功率在500MW左右,变压器的平均负载率为50%,配电变压器总容量应在2000MVA左右,设各级变压器的平均运行效率为99%左右,变压器有功损耗为10MW左右,如果将变压器的运行效率提高0.2%,则可节电2MW。若全年按照8000h运行时间计算,则可节约电能1600万kWh。
钢铁厂配电变压器的无功损耗:高压(220kV/10kV)变压器为负载容量10%左右,中压变压器为负载容量的5%左右,平均在8%左右,1000万t钢的钢铁厂配电变压器总无功损耗在80Mvar左右。
3.2 使用高压用电设备 减少变压器总容量
使用高压用电设备,减少变压器总容量是减小变压器损耗最有效的措施,将1000万t钢的钢铁厂配电变压器容量由2000MVA减少到1800MVA,至少可节电1MW,全年可节约电能800万kWh,并减少无功损耗8Mvar左右。
3.3 变压器经济负载系数
(1) 有功经济负载系数βP。设变压器额定容量为SN,输入功率为P1,输出功率为P2,负载功率因数为 ,空载损耗为P0,负载损耗为PK,负载系数为β,变压器效率为η,则变压器有功损耗:

当 或 时,P%最小。即当变压器铜损和铁损相等时,变压器有功损耗最小。变压器效率:

一般变压器的P0/PK≈1/4~1/3,βP=0.5~0.6。
(2) 无功经济负载系数βQ。设变压器空载电流为I0%,短路阻抗电压UK%,则变压器的空载励磁功率Q0=SN(I0%),额定漏磁功率QK=SN(UK%),变压器的无功消耗率:

当 或 时,ΔQ%最小。即当变压器空载励磁功率等于负载漏磁功率时,无功损耗最小。
(3) 变压器综合经济负载系数βZ。多数情况下,变压器有功经济负载系数和无功经济负载系数很接近,但也有差异较大的,必须综合考虑有功和无功的影响,设无功经济当量为KQ,当 时,变压器等效有功损耗最小。变压器等效有功损耗:

变压器效率:
(6)
式中,KQ的物理意义是变压器每减少1kvar无功功率消耗时,引起连接系统有功功率损失下降的kW值。无功当量值如表2所示[3]。
表2 无功当量值
变压器在连接系统的位置
KQ/kW·kvar-1
负载最大时
负载最小时
发电机电压供电的变压器
0.02
0.02
高压线路变压器
0.07
0.04
由区域线路供电的110~35kV的降压变压器
0.10
0.06
由区域线路供电的6~10kV的降压变压器
0.15
0.10
由区域线路供电的降压变压器,但无功补偿由同步调相机负担
0.05
0.03
表2中数据表明,无功源离电源越远无功当量越大, 故无功就地补偿原则对减小线损具有重要意义。
3.4 配电变压器节电运行案例
某用户负载容量为16MVA,负载电压为10kV,现有2种供电方案:
(1) 方案1。用1台110kV/10kV,20MVA供电变压器带16MVA负荷,变压器参数UK=10.5%,PK=135kW,I0%=2.8,P0=22kW。
(2) 方案2。用2台同(1)一样的供电变压器,各带8MVA容量负荷。
比较2种方案的有功损耗和无功损耗:供电变压器综合经济负载系数βZ=0.48,取无功经济当量KQ=0.13,由式(3)、(4)可以算出方案1中ΔPA=108.4kW,ΔQA=1904kvar;方案2中ΔPB=87.2kW,ΔQB=1792kvar。
由式(5)可算出方案2比方案1多节电ΔP=35.8kW。以1年8000h计算,可节约电能283200kWh。2台变压器并列运行,不仅节电,而且提高了供电的可靠性。
4 配电网重构技术
4.1 配电网重构技术的概念
通过改变配电网络拓扑结构来提高可靠性,降低线损,均衡负荷和改善供电电压质量的技术称为配电网重构技术。配电网重构包括正常运行时的网络重构和故障状态下的网络重构。
配电网重构是优化配电系统技术、提高配电系统安全性和经济性的重要手段。配电网重构是在满足配电网呈辐射状、馈线热熔、节点电压偏差要求和变压器容量要求的前提下,确定使配电网线损、负荷均衡度,供电质量等指标最佳的配电网运行方式。由于配电网中存在大量的分段开关和联络开关,因此配电网重构是一个多目标非线性混合优化问题[4]。
4.2 钢铁厂配电网重构技术
钢铁厂是个用电大户,而且用电效率低。不断降低钢铁厂配电系统的能耗和线损,提高配电系统运行经济效益是钢铁厂供电系统面临的一项长期课题,通过实施配电网重构技术、改变运行方式,从而降低配电网线损是钢铁厂节电的重要途径之一。因此,我们在配电网重构时把线损最小作为目标函数,把负载均衡、提高供电质量、安全可靠运行等目标作为约束条件。通过降维处理,把多目标非线性混合优化问题简化为单一目标的非线性混合优化问题。
配电网重构算法时一个十分复杂的理论问题,更是一个实际工程问题。没有实际经验,仅根据理论计算结果对配电网进行重构风险大,一旦出现安全运行问题,后果不堪设想。我们在实际工程中推荐使用“基于专家系统的配电网重构算法”,按照有效的专家知识和经验制定配电网重构规则,尽管不是最优,但最可靠,可以得到在满足安全可靠运行及供电质量前提下优化的配电网结构。
4.3 基于专家知识和经验的配电网重构案例
以对某热轧厂配电网进行重构计算为例。
(1) 问题。某热轧厂35kVⅡ段母线谐波电压严重超标,电压总谐波畸变率高达10%以上,供电变压器、线路和用电设备谐波损耗大 ,电力事故频繁,无法安全生产。
(2) 专家知识和经验。测试数据表明35kV配电网络电缆的充电电容与系统阻抗在1300Hz左右产生并联谐振,致使热轧负荷较小的23、25、29、31次谐波电流在35kVⅡ段母线上产生很高的谐波电压。
(3) 数据分析结果。配电网23、25次谐波阻抗辐角在第3象限,谐波电流是由负荷流向系统,系统的谐波阻抗为感性阻抗;配电网29、31、37次的谐波阻抗的辐角在第二象限,谐波电流是由负荷流向系统,系统的谐波阻抗为容性阻抗;当系统谐波阻抗随频率增大由感性阻抗向容性阻抗变化时,肯定存在一个谐振频率。25次系统谐波阻抗远大于23次和31次系统谐波阻抗,系统阻抗谐振频率应在1250Hz和1525Hz之间,并靠近1250Hz,应在1300Hz左右。
(4) 解决方案。配电网络重构,破坏原谐振条件 (Xs为系统的基波阻抗,Xc为35kV配电系统电缆容抗)。用户将35kVⅡ段母线上其中1条支路负荷移至35kVⅠ段母线上,破坏了原来的谐振条件,使谐振频率上移并远离非特征谐波频率。
(5) 效果。配电网重构后,35kVⅡ段母线电压总谐波畸变率下降至3%以下,降低了谐波损耗,消除了谐波运行事故。
5 电加热设备的配电功率控制技术
5.1 我国电加热设备概述
2000年全国工业电加热设备年耗电量占全国总用电量的12.2%,热处理工业炉耗电86亿kWh,电弧炉耗电132亿kWh,铁合金埋弧炉耗电232.5亿kWh,电石埋弧炉耗电115亿kWh。我国电加热设备较国外同类设备单耗平均高出15%以上。西安电炉厂制造的GW - 1.0感应炉单耗为670kWh/t,西德AEGNTG - 1000感应炉单耗为570kWh/t;我国炼钢电弧炉平均单耗为550kWh/t,国外先进水平为280kWh/t[1]。由此可见,我国加热设备节电潜力巨大。
电加热设备的主要节电措施:选用高效电热设备、采用先进工艺、采用大功率加热设备、优化配电功率曲线并进行控制。本文以某钢厂100t交流电弧炉为例说明采用配电功率控制技术的节电效果。
5.2 交流电弧炉的配电功率控制技术
(1) 电弧炉合理的供电制度。电弧炉炼钢过程的温度由高到低较为合理:高温氧化、 [1] [2] 下一页
|