机电之家行业门户网运行
文章 下载
最新公告:

  没有公告

设备维修与管理培训
您现在的位置: 设备维修与管理 >> 润滑密封 >> 机械密封 >> 密封材料 >> 文章正文
 
赞助商
 
 
最新文章
 
 设备管理中存在的问题及改进措施
 探索设备备件更换规律,实现设备
 创新设备管理 提升竞争优势
 设备管理关乎企业效益
 TPM自主保全实践的探索与思考
 驱动离心泵的电机电流高的原因及
 离心泵运行时不打量的原因
 离心泵一般容易发生的故障有哪些
 离心泵各零部件的检修标准
 计量泵的常见故障及处理方法
 
推荐技术
 
 
相关文章
 
维修机械用泵的密封
浅议泵用机械密封泄漏点
浅谈固液两相流泵机械密
新材料解决汽车发动机密
中压给泵轴承温度分类
聚四氟乙烯衬里泵阀及自
机械密封材料的性能要求
什么是动密封和静密封
气体润滑不接触式机械密
如何选购和使用密封件
 
客户服务
 
如果您有设备方面好的文章或见解,您可以送到我们的投稿信箱
客服电话:0571-87774297
信   箱:88ctv@163.com
我们保证在48小时内回复


s

b

g

l

.

j

d

z

j

.

c

o

m

 

[推荐]润滑脂         ★★★
润滑脂
作者:未知 文章来源:网上搜集 点击数: 更新时间:2006-10-26 20:25:13

润滑脂的组成

    润滑脂是由基础油和稠化剂再加入改善性能的添加剂所制成的一种半固体(通常是油膏状)的润滑剂,其成分有基础油、稠化剂、稳定剂和添加剂等。

    1.基础油

    基础油是润滑脂中含量最多(占70%-90% )的组分,是起润滑作用的主要物质。矿物油和合成油都可作基础油。矿物油是制造普通润滑脂的主要基础油,其价格低,但使用温度范围较窄,不能同时满足高、低温要求。合成油用于制造高、低温或某些特殊用途的润滑脂。基础油的粘度必须根据润滑脂的使用条件决定,低温、轻负荷、高转速应选低粘度油,反之,则应选中粘度或高粘度油。

    2.稠化剂

    稠化剂在润滑脂中的含量约占10%-30%,其作用是使基础油被吸附和固定在结构骨架之中。稠化剂有四类:烃基、皂基、有机和无机稠化剂。

    3.稳定剂

    稳定剂的作用是使稠化剂和基础油稳定地结合而不产生析油现象。不同润滑脂使用的稳定剂也不同,如钙基脂用微量水(1%~2%)作稳定剂,一旦钙基脂失去水分,脂的结构就完全被破坏,从而造成严重的油皂分离。

    4.添加剂

    常用添加剂有抗氧剂、极压抗磨剂、防锈剂、粘附剂、填充剂和染料剂等。

润滑脂的作用机理

    润滑脂的润滑作用,部分是由于稠化剂的作用,部分是由于基础油的特殊结合所带来的既不同于基础油又不同于稠化剂的润滑特性。基础油分三部分保持在润滑脂结构中,在皂胶团表面的基础油因皂分子碳氢链末端之间的吸引力而维系在结构内,常称这部分基础油为游离油;在皂分子的二维排列层之间的基础油,除链末端之间的吸引力维系外,层间还有类似毛细管的作用,因此称之为毛细管吸附油;而处于皂分子晶体内的基础油,由于皂分子羧基端的离子场的影响而被牢固地维系在晶体内,常称这部分基础油为膨化油。由于外力的作用,皂胶团被压缩,首先分离出来的是游离油,其次是毛细管吸附油,而膨化油只有当润滑脂结构被破坏时才分离出来。前面仅就润滑脂的析油作了讨论,但到底滚动轴承内润滑脂的动态如何?又是以何种机理进行润滑的呢?滚动轴承内的润滑脂经过初期的复杂流动后而达到稳定分布状态,长时间的润滑可以认为是这样的,摩擦部位残留的特别少量流动的润滑脂和轴承内、外静止状态的润滑脂,与由于受热、振动、离心力等作用而析出的基础油共同起润滑作用。同时,滚动体近旁静止的润滑脂与滚动体表面附着的润滑脂膜之间,可能存在着微量润滑脂的不断交换。轴承空腔内及密封盖里附着的静止润滑脂能起防止流动化润滑脂流出的密封作用和供给基础油的作用。因此,轴承空腔、密封盖的容积或形状,也对润滑效果有较大的影响。

    润滑脂一般可被看作是加有表面活性物(稠化剂)的润滑油。这类表面活性物含有极性基团和烃基链分子,并形成一定厚度的润滑层。在个别情况下,这润滑层可达400~500个单分子层。可见,这样多分子层隔开的摩擦副对偶表面要比常见润滑油单分子层隔开摩擦副对偶表面的摩擦小得多。因此,在边界润滑条件下,润滑脂比润滑油更适用于苛刻条件下的齿轮、重载轴承等的润滑。

润滑脂的主要性质

    1.锥入度

    锥入度是评价润滑脂稠度的常用指标,它是在规定负荷、时间和温度的条件下,标准锥体沉入润滑脂的深度,单位为0.1mm。锥入度愈大,表示润滑脂稠度愈小,反之则稠度愈大。

    润滑脂的稠度等级是按锥入度来划分的,国内、外都采用美国润滑脂协会(NLGI>按工作锥入度划分的润滑脂稠度等级,润滑脂的级号愈小,锥入度愈大,润滑脂愈软。  2.滴点

    在试验条件下,润滑脂从杯中滴下第一滴或成柱状触及试管底部时的温度,称为润滑脂的滴点。滴点是衡量润滑脂耐温程度的参考指标,一般润滑脂的最高使用温度要低于滴点20-30℃,这样才能使润滑脂长期工作而不至于流失。

    润滑脂滴点的高低,主要取决于稠化剂的种类和数量。

    3.保护性能

    润滑脂的保护性能是指保护金属表面、防止生锈的作用,它包括三个方面:①本身不锈蚀金属;②抗水性好,即不吸水、不乳化、不易被水冲掉;③粘附性好、高温不滑落、低温不龟裂,能有效地粘附于金属表面而将空气和腐蚀性物质隔绝。

    4.安定性

    润滑脂的安定性包括胶体安定性、化学安定性和机械安定性。润滑脂在贮存和使用中的抑制析油的能力,称为润滑脂的胶体安定性。胶体安定性差的润滑脂,析油严重,不宜长期贮存。发现润滑脂轻度析油时,可将其搅拌均匀后尽早使用。润滑脂在贮存和使用中抵抗氧化的能力,叫做润滑脂的化学安定性。皂基脂比较容易氧化,严重氧化的皂基脂,颜色变深,有恶臭,对金属产生腐蚀,自身变软或结块。润滑脂的机械安定性,是指润滑脂受到机械剪切时,稠度立即下降,当剪切作用停止后,其稠度又可恢复(但不能恢复到原来的程度)。机械安定性差的润滑脂,其使用寿命短。

    5.流变性

    润滑脂在外力作用下产生形变流动的性能,称为流变性,其参考指标有强度极限和相似粘度。从降低机械摩擦力和便于管道供脂出发,润滑脂的强度极限和相似粘度不宜过大。

    6.蒸发损失

    润滑脂在使用中常常由于流失、蒸发和氧化变质而逐渐消耗,特别在高温工作时蒸发更易成为严重的问题。蒸发夺去了脂中的润滑液体成分,从而改变了润滑脂组织影响其使用性能。

    润滑脂的蒸发性对既需要在高温同时也需要在低温条件下工作具有重要意义,因为在零下低温工作的润滑脂,其基础油的粘度和凝点都要求很低,而大多数低粘度、低凝点的矿油都含有较轻的馏分,在不高温度(100℃)时就会大量蒸发。因此,宽温度范围使用的润滑脂常常只能用合成润滑油作基础油。

    将蒸发损失和滴点结合起来,可以较好地评价高温润滑脂的高温性能。

    7.游离酸或碱

    在润滑脂中含有游离酸,特别是低分子有机酸,或过多的游离碱都会引起机件的腐蚀,故应加以限制。游离酸多是矿油的氧化或皂的分解产物。少量游离碱的存在对抑制皂的水解有利,但过多又会影响胶体的安定性(易引起皂的凝聚)。

润滑脂的主要品种及用途

    GB/T7631.8-90将X组(润滑脂)按应用时的操作条件进行了分类,分类方法是用五个字母和一个数字组成命名代号,表示方法如下:
 
         第1个字母代表润滑脂;第2~5个字母的含义如表1所示。

    例:L-XEGHB2表示低温-40℃,高温180℃,在水洗条件下对淡水防锈,极压型,稠度等级为2。

     表1    润滑脂的命名及其含义
 
表2   润滑脂主要品种、性能及用途
   新命名代号比较复杂,目前尚未普及,以下仍按原命名方法及习惯介绍常用的主要品种和用途。

    1.矿油润滑脂

    矿油类润滑脂品种较多,目前广泛使用的主要品种、性能及用途见表10。其中,锂基润滑脂几乎兼备其它皂基脂的优点,在多数场合下都可取代其它皂基脂,是国内推广应用的新品种。

    2.合成油润滑脂

    合成油经稠化而成的润滑脂统称合成(油)润滑脂,均系特殊性能的润滑脂。表11为几种合成脂的性能及主要用途。

表3   合成润滑脂的主要性能及用途
 
润滑脂的选用及添加量

    1.润滑脂的选用

    (1)工作温度  润滑脂在使用部位的最高工作温度下不发生软化流失,是选用的重要指标之一。矿油润滑脂的最高工作温度都在120~130℃以下,更高一些的工作温度应选用合成脂。

    (2)抗水性  常用润滑脂抗水性的顺序为:烃基脂>铝基脂>钙基脂>锂基脂>钙钠脂>钠基脂。因此,常接触水的部位应使用铝基脂,潮湿部位应使用钙基脂或铿基脂。

    (3)负荷和极压性  对载荷高的场合,应选用加入极压抗磨添加剂的极压润滑脂。

    (4)润滑脂牌号的选择  润滑脂常用稠度等级为00、0、1、2、3、4、5等,低稠度等级(0和1)润滑脂的泵送分配性好,适用于集中供脂的润滑系统。汽车和大多数机械应按说明书规定用稠度等级为1或2的脂;小型封闭齿轮用稠度等级为0或00的脂;采矿、建筑、农业机械等粉尘大的场合下工作的机械,可用稠度等级为3或更硬的脂,以阻止污染物侵入。

    2.润滑脂的添加量

    一般滚动轴承装脂量约占轴承空腔1/3~1/2为好,装脂量过多散热差,容易造成温升高、阻力大、流失、氧化变质快等危害。

主要固体润滑剂介绍

    固体润滑剂是指用以分隔摩擦副对偶表面的一层低剪切阻力的固体材料。对于这类材料,除了要求具有低剪切阻力外,与基底表面之间还应具备较强的键联力。这也就是说,载荷由基底承受,而相对运动发生在固体润滑剂内。

    使用固体润滑剂的优点在于:润滑油脂的使用温度范围一般为-60℃~+350℃,超过这一温度范围,润滑油脂将无能为力,而固体润滑剂却能充分发挥其效能;润滑油脂的承载能力也远远不如固体润滑剂;在高真空、强辐射、活性或惰性气体环境中以及在水或海水等流体中,润滑油脂容易失效,也需借助于固体润滑剂;固体润滑剂在贮存,运输和使甩过程中,对环境和产品的污染也比润滑油脂少得多;固体润滑剂还特别适合于要求无毒、无臭、不影响制品色泽的食品和纺织等行业;固体润滑剂的时效变化小,保管较为方便。然而,固体润滑剂的缺点也很突出,例如润滑膜一旦失效就难以再生;一般地说,其摩擦因数比润滑油脂的大;摩擦界面上的热量不易被带走或逸散;容易产生碎屑、振动和噪声等。

    常用的固体润滑剂有:层状固体材料(如石墨、二硫化钼、氮化硼等)、其它无机化合物(如氟化锂、氟化钙、氧化铅、硫化铅等)、软金属(如铅、铟、锡、金、银、镉等)、高分子聚合物(如尼龙、聚四氟乙烯、聚酰亚胺等)和复合材料。

    一、层状固体材料

    层状固体具有层片状结晶结构,同一层内的原子间结合力较强,而层与层之间原子间的结合力较弱。这种层片状晶体的叠合,意味着垂直于层片方向可以承受很大的压力,而沿层片方向只要有一个较小的切向力作用,就会很容易地使层片与层片相互错开,故能承受较大压力而摩擦因数较小。这种承压能力大而抗剪切力低的材料,为摩擦副提供了良好的润滑。这一点与吸附膜相似。   1.石墨

    石墨为层片状碳,层与层之间的结合力较小。在切向力作用下,层与层之间容易滑动。在大气条件下,石墨对石墨或石墨对钢的摩擦因数大约为0.1~0.15,具有明显的减摩效果;而在真空中,石墨间的摩擦因数则上升为0.5~0.8。在摩擦过程中,经过除气处理的石墨一旦导入空气、氧气、水蒸气或苯、乙醇、丙酮、庚烷蒸汽等,则摩擦因数将很快降低,而当导入氮或二氧化碳等气体,却并先降低摩擦的效果。

    不论是天然石墨还是人造石墨,使用前均应粉碎。作为润滑剂,特别是粉剂,应以天然石墨为主。使用时,可直接将石墨粉加在摩擦副对偶表面之间,也可以将石墨和其它材料制成复合材料使用;也有把碳一石墨粉压制成块,经切削(或不经切削)制成零件(已成功地应用于压缩机活塞环等零件上),这种材料具有很好的自润滑效果。若把石墨粉加在油(或脂)中作为润滑剂使用,则在重载作用下油膜破裂时,石墨仍能继续起润滑作用。将石墨粉加在水中,并添加合适的粘结剂制成的润滑剂,已成功地应用于热轧等工艺中。

    石墨的化学稳定性好,抗辐射能力强,无毒,价格低等,都是其优点,但因石墨的热稳定性较差,所以限制了它以粉状或块状固体膜的形式使用。石墨在325℃时与氧接触会生成CO2,因而一般最高使用温度不超过400℃。

    将石墨置于氟气中,经加热可制备氟化石墨。氟化石墨呈白色(或接近白色),不像石墨的磨屑会污染摩擦副或产品。在27~345℃的温度内,氟化石墨的摩擦因数比石墨小,其寿命则比石墨长。它在真空和惰性气体中也具有润滑性,从而改善了石墨在无水蒸气条件下的润滑性。氟化石墨的缺点是价格较贵。

    2.二硫化钼

    二硫化钼粉剂是由天然辉钼精矿经化学提纯制成。其分散性高、纯度高、吸附性强、色黑稍带银灰色、有金属光泽、触之有滑腻感、不溶于水。它也是一种具有层状结构的材料。由于结合强度低,很容易沿解理平面滑移,所以剪切阻力小,摩擦因数小。在大气中,MoS2解理面与钢表面的摩擦因数只有0.1左右,即使在真空中也只有0.2。MoS2在干燥氮气中的润滑性能很好,但在干燥氧气和潮湿空气中则润滑性较差,这些润滑特性均与石墨不同。MoS2在420~430℃内就会快速氧化,当温度超过800℃时,MoS2 可能分解,而金属钼的摩擦因数相当大,因此润滑性能就大大下降。

    二硫化钼的常见使用方法有下列几种。

    (1)干膜  将MoS2置于摩擦副对偶表面间,靠摩擦副对偶表面间的机械作用而形成一层附结于摩擦表面的薄膜。制备干膜以前,应先将摩擦表面净化,擦除油污、锈斑并清除尘埃,只有这样才能在摩擦表面上形成一层粘结强度高的MoS2 表面膜。对于不易导入MoS2粉剂的摩擦副,可将MoS2粉混入有挥发性的流体中,将其喷涂在摩擦表面上,待流体挥发后即形成表面膜。但这样制备的表面膜,不仅粘结强度低,而且不像经机械作用所形成的表面膜那样按最优取向排列。

    (2)涂敷膜  将MoS2 粉加入树脂或其它粘合剂形成悬浮胶体,然后喷涂、侵入或简单地刷涂到表面上。事先对表面进行仔细清洗和预处理,这有利于耐磨寿命的增加。

    (3)复合材料  将MoS2粉加入金属基或塑料基的复合材料中,可以直接用来制造零件,也可用来覆盖在金属表面上,其中所含的MoS2(或其它低剪切强度材料)组分起润滑作用。

    (4)润滑油或脂的添加剂  可将MoS2粉以较低的浓度(<1%)作为齿轮油和发动机油的添加剂,也可以较高的浓度作切削液的添加剂。但主要是以0.5%~18%的浓度用作润滑脂的添加剂,最常用于锂基脂。当由于热或机械作用而使油或脂的润滑能力衰减时,MoS2就起着保护摩擦表面的作用。当用于在接近润滑脂滴点温度下工作的滑动轴承中时,MoS2的浓度以6%-8%为最佳。  3.与二硫化钼相类似的材料

    硫族元素,除硫外,尚有硒(Se),碲(Te )等。它们与难熔金属如钨(W),钒(V),钽(Ta )和铌(Nb)等形成二硫族化合物,如WS2, WSe2, NbSe2, TaS2等,其结构均为六方晶体。在真空、辐射以及高温下,这些化合物的性能均优于石墨、MoS2。这一特点可能因铌、钽、钨的原子直径大于钼原子,削弱了解理面间的范德华力,因而使这些化合物的剪切阻力降低。

    4.氮化硼

    氮化硼(BN)也是一种具有层状结构的材料,它与传统的固体润滑剂相比,石墨的解理面上全是碳原子,MoS2的解理面上全是硫原子,而氮化硼的解理面上既有氮原子又有硼原子。当它在大气中常温条件下与金属表面接触而相对运动时,摩擦因数约为0.2~0.4,比石墨大,但随着温度的升高而减小。BN的摩擦性能不受水蒸气影响,但在有气体(如庚烷)中,摩擦因数小于0.2。在大气条件下,BN在温度高达900℃时仍有较小的摩擦因数和良好的化学稳定性。将BN加入润滑油中,可以作为高温润滑剂使用。

    二、氧化物、卤化物及其它化合物

    1.氧化物

    众所周知,钢铁表面的氧化膜具有保护表面的作用。当金属表面直接接触并发生粘着时,摩擦磨损就增加,一旦表面存在.氧化物则摩擦磨损就可减小。氧化铬(Cr2O3 ),氧化钛(TiO2 )、氧化锆(ZrO2)的熔点约在1600~3000℃之间,均有可用作高温工况下的表面保护膜。氧化硼(B2O3  )在400℃以下的摩擦因数并不小,但当温度接近熔点时下降到0.1左右。氧化铅(PbO)在常温下的摩擦因数不小(约为0.3~0.4),但在200~650℃温度范围内只有0.1~0.15,确实也是一种很好的高温润滑材料。

    2.卤化物

    氟化物的质地较软,抗剪强度较低,并且有化学惰性,可覆盖在金属表面上起润滑作用,是良好的高温固体润滑剂。氟化钙(B2O3  )和氟化钡(BaF2 )应用温度范围比PbO更宽,在空气或氢气中,CaF2-LiF以及CaF2-BaF2等混合物,即使在高达650~820℃的高温下,仍有低摩擦的效果。

    3.其它化合物

    硼酸盐也是高温固体润滑剂,在熔融状态下才显示出优良的润滑性能,当温度超过480℃时,它具有流体动力效应,超过760℃时则起边界润滑剂作用。在高温下,硼酸与金属氧化物起反应而形成玻璃。硫化硼在高温中的低摩擦则归因于硼酸。此外,各种玻璃,如硼酸铅玻璃、硼硅酸铅玻璃、铝硅酸盐玻璃等,可以用于500~800℃的温度范围,而硅玻璃甚至可用于超过1100℃的高温。用玻璃润滑的缺点是难以从润滑表面将其清除。

    三、聚合物

    近年来,高分子材料在工程中的应用日益普遍。热固性塑料,如酚醛树脂、环氧树脂等,具有网络状结构,但无晶态性状,并不是理想的润滑材料,与其它润滑剂组合使用,实质上只起到粘结剂的作用。热塑性塑料有晶态的,也有非晶态的,如聚四氟乙烯(PTFE )、尼龙(PA),聚氯乙烯(PVC)、聚乙烯(PE)、聚碳酸酯(PC),聚酰亚胺(PI)、聚甲基丙烯酸甲酯(PMMA )等,其中有些材料可以直接用于润滑,有些材料则须与其它材料组合在一起而产生润滑效果。用聚合物润滑的主要优点是:化学稳定性好,在低温、真空中以及各种气氛中仍能有效润滑,与润滑油脂一起使用不发生干扰。其缺点则是:机械强度和承载能力低,热传导能力弱,只能在有限的载荷及温度条件下使用。

    1.聚乙烯(PE)

    聚乙烯的摩擦因数约为0.3~0.35,耐磨性也比较好。高密度聚乙烯的摩擦因数只有0.1~0.14,减摩效果更佳。

    2.聚四氟乙烯(PTFE)

    聚四氟乙烯的摩擦因数很小(约为0.05-0.1),而耐磨性能很差,化学稳定性则很好,在高达260℃的温度下仍能表现出良好的低摩擦性能。PTFE可通过涂敷工艺或在金属表面上涂擦而靠机械作用附结于表面上,也可以将其编织而用粘结剂粘合在表面上,还可将PTFE喷涂于表面上,在>325℃温度下烧结(可用其它树脂粘结),再在较低温度下固化。单独使用PTFE时,只适用于中等滑动速度、轻载以及防粘,但使用MoS2会造成污染的场合。   3.尼龙(PA) 

    尼龙有一定的低摩擦性能(摩擦因数约为0. 15~0. 35)和良好的耐磨性,在载荷作用下会发生冷流,在潮湿空气中会吸水膨胀。尼龙基体中以玻璃纤维作填充料可以降低冷流,而添加MoS2和PTFE则可降低摩擦。

    4.聚酰亚胺(PI)

    聚酰亚胺在常温时摩擦因数较高(约0.47),在100℃以上时,摩擦较小,寿命也比较长。PI的机械强度和耐温性能较好,使用温度范围为- 240~+360℃,连续使用的最高温度可达260℃。

    四、软金属

    软金属如铅、镉、铟、金或银等,可用作硬质基底的表面涂层。在常规润滑剂不起作和在极高温以及特殊工况下,它们可以为摩擦面提供一层有效的润滑膜。载荷由基底承受,切向运动则发生在低抗剪强度的软金属膜中。虽然这些软金属的摩擦因数要比MoS2、PTFE等材料高些,但可有效地应用于防腐蚀、耐辐射和高温的场合。

    软金属膜的膜厚对润滑的有效性影响很大。在

[1] [2] 下一页

文章录入:设备管理    责任编辑:设备管理 
  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    不良信息
    举报中心
    机电之家设备管理网
    致力于机电设备维修与管理技术
    网络110
    报警服务
    服务热线:0571-87774297 传真:0571-87774298 电子邮件:donemi@hz.cn 服务 QQ:66821730
    机电之家(www.jdzj.com)旗下网站 杭州滨兴科技有限公司提供技术支持

    版权所有 Copyright © 机电之家--中国机电行业门户·设备维修与管理

    主办:杭州高新(滨江)机电一体化学会
    浙ICP备05041018号