大型离心式压缩机组、蒸汽透平的轴端密封和级间密封常用迷宫式密封(又称梳齿密封)。气体在迷宫密封中的流动是一种复杂的三维流动。当转子因挠曲、偏磨、不同心或旋转产生涡动运动时,密封腔内的周向间隙将会不均匀,即使密封腔内人口处的压力周向分布是均匀的,在密封腔的出口处也会形成不均匀的周向压力分布,从而产生一个作用于转子上的合力,此激振力会导致转子运动失稳,发生异常振动。 振动机理如图1-1所示,在迷宫密封中,密封装置前后压力分别为p1及p3,密封腔内的压力p2取决于p1, p3及密封齿隙δ1、δ2。假设由于制造及安装误差,转子在密封腔中倾斜时(δ1>δ2),若转子因受初始扰动而处于涡动状态,转子与定子之间的密封间隙会发生周期性变化。当转子向着定子作径向运动时,密封腔的排出端和入口端间隙均缩小,但是排出端原来的间隙较小,因此相对间隙缩小率比入口端更大一些,这样密封腔中流人的气量大于流出的气量,由于气体的积聚而使腔中压力p2 升高,形成一个在图中向下作用于转子的力。当转子离开定子作径向运动时,密封腔排出端相对间隙比入口端扩大得更快,腔中流出气量大于流入气量,压力下降,形成一向上的作用力。因此作用在转子上的力是两者的叠加。
图1-1 迷宫密封腔中气流压力变化
但是密封腔中的压力变化并不与转子位移同相位,而是滞后于转子位移一个ө角(如图1-2所示)。如果转子自身旋转速度为ω,涡动角速度为Ω,当转子从底部向左方向涡动一个θ角时,由于压力变化滞后于转子位移,则气流压力在转子周向上的分布是底部最大,顶部最小,其合力为F,则其分为Ft始终作用在转子的涡动方向上,此切向力即是加剧涡动的激振力。
图1-2 密封装置中的气体动力效应
在上述过程中,转子振动的位移y与密封腔中压力p1的变化曲线在的半周t=(1/4~3/4)T的半周内,密封腔内力p1始终低于其平均值;反之,在另一半周内则始终高于其平均值。因此,在这一振动过程中,气流对密封装置是输入功的,密封装置的气体动力激振力为自激因素。 另外,气流流动时的惯性力远远超过摩擦力,由于气流进入密封腔后动能不能完全损失掉,还有一定的余速,这部分速度不仅使气流沿轴向流动,而且还以很大的圆周速度分量围绕转子转动,即形成“螺旋形”流动[图1-3(a)]。如果密封腔内径向间隙不均匀,则气流在腔中从进口流向出口时随着截面间隙的不断变化,气流沿其流动方向上的压力也不断发生变化,因而在转子周围形成不均匀的压力分布,其合力F的方向垂直于转子的位移方向,与转子的旋转方向相同,此力激励转子作向前的正进动运动。 与此类似,常见的高速、高压旋转机械中,蒸汽透平是靠气流推动叶片转动的,离心式压缩机是由叶片推动气流旋转的,但二者有一点是相同的,即当转子发生弯曲时,叶轮会偏向内腔一侧,叶轮在内腔的间隙一边大,一边小,在这种情况下,气流加于叶片的圆周力在间隙大的一侧大于间隙小的一侧[图1-3 (b)],各叶片所受周向力的总和除力偶外,还有垂直于轴O′的位移OO′的力Ft,这个力使转子失稳而产生涡动。
图1-3 气体在密封腔内的旋转效应
由于Mt随介质压力及负荷的增加而增大,所以当介质压力及负荷增加而使Ft,达到一阈值时,就可能产生自激振动。
|