机电之家行业门户网运行
文章 下载
最新公告:

  没有公告

设备维修与管理培训
您现在的位置: 设备维修与管理 >> 设备管理 >> 基础管理 >> 特种设备管理 >> 资讯正文
 
赞助商
 
 
最新文章
 
 设备管理中存在的问题及改进措施
 探索设备备件更换规律,实现设备
 创新设备管理 提升竞争优势
 设备管理关乎企业效益
 TPM自主保全实践的探索与思考
 驱动离心泵的电机电流高的原因及
 离心泵运行时不打量的原因
 离心泵一般容易发生的故障有哪些
 离心泵各零部件的检修标准
 计量泵的常见故障及处理方法
 
推荐技术
 
 
相关文章
 
锅炉的计算机控制
锅炉鉴定与成新率确定标
锅炉操作指引标准
锅炉、压力容器管理标准
锅炉维修保养标准
锅炉技术监督制度
一次风在线监测系统在直
某300MW锅炉空气预热器B
锅炉的基础管理(一)
锅炉基础知识(二)
 
客户服务
 
如果您有设备方面好的文章或见解,您可以送到我们的投稿信箱
客服电话:0571-87774297
信   箱:88ctv@163.com
我们保证在48小时内回复


s

b

g

l

.

j

d

z

j

.

c

o

m

 

锅炉、与压力容器安全对策(5)           
锅炉、与压力容器安全对策(5)
作者:佚名 文章来源:不详 点击数: 更新时间:2008-9-24 17:06:11

55)应力腐蚀破裂(Stress corrosion crack)

    压力容器应力腐蚀破裂是指容器壳体在腐蚀性介质和拉伸应力的共同作用下而产生的破裂。金属构件的应力腐蚀,一般要具备两个条件。一是金属与环境介质的特殊组合,即某一种金属只有在某一类介质中,并且还必须在某些特定的条件下,如温度、压力、湿度、浓度等,才有可能产生应力腐蚀。二是承受拉伸应力。包括构件在运行过程中产生的拉伸应力和制造加工过程中所留下的残余应力、焊接应力、冷加工变形应力等。而这两个条件,在某一些压力容器中是完全具备的。应力腐蚀破裂的容器的特征是:容器整体无宏观塑变形(有些文献指出,应力腐蚀断裂可以有0.5%的伸长率),断裂口壁厚基本不减薄;断裂无固定的方位,但总是发生在应力集中处和腐蚀性介质富集的部位;容器壳体一般不会破裂成碎片;断裂面大部分垂直于主拉伸应力方向,而最后断裂的瞬裂区一般都有剪切边;断口宏观检查通常可以观察到裂纹源,断口有明显的裂纹扩展区和最后断裂区。应力腐蚀的裂纹扩展区通常都比疲劳断口显得粗糙,没有贝壳状弧线,且腐蚀裂纹扩展区常残留有腐蚀产物。比较容易对钢制容器发生应力腐蚀的介质有以下几种:液氨,杂质中含有较多硫化氢的气体或液化气体。热碱溶液,含水的一氧化碳气体等。

(56)蠕变破裂(Creep rupture)

    锅炉和压力容器蠕变破裂是指壳体或其它承压部件长期在较高的温度下承受载荷,使金属缓慢地产生塑性变形,最后导致破裂。金属的蠕变断裂的基本条件是温度较高(高于金属熔化温度的25~35%,对碳钢和低合金约为350~400℃),应力较大(一般高于材料的蠕变极限)和承载时间过长。压力容器整个壳体在蠕变而破裂的情况是少见的,一般只发生在局部区域或其附件上,如锅炉的过热器、水冷壁等高温部件就较易产生蠕变破裂。蠕变破裂的特征除了明显的塑性变形外,主要表现在金属的内部结构上,只有通过金相检查才能判别。锅炉压力容器承压部件的蠕变破裂常见于以下一些原因:选材不当,例如,由于设计时的疏忽或材料管理的混乱,错用碳钢来代替抗蠕变性能较好的合金钢;结构不合理,使部件的局部区域产生过热现象;制造时材料组织改变,抗蠕变性能降低;操作不当或维护不良使部件局部温度升高等。

(57)氢脆(Htdrogen embrittlement)

    压力容器的氢脆(或称氢损伤)是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性破坏。高温高压的氢对钢的损伤主要是因为氢以原子状态渗入金属内,并在金属内部再结合成分子,产生很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合,使钢脱碳,或使钢中的硫化物与氧化物还原。造成压力容器氢脆破坏的氢,可以是设备中原来就存在的,例如。炼钢、焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。或设备在电镀或酸洗时,钢表面被吸附的氢原子过饱和,使氢渗入钢中;也可以是使用后由介质中吸收进入的,例如在石油、化工容器中,就有许多介质中含氢或含混有硫化氢的杂质。钢发生氢脆的特征主要表现在微观组织上。它的腐蚀面常可见到钢的脱碳铁素体,氢脆层有沿着晶界扩展的腐蚀裂纹。腐蚀特别严重的容器,宏观上可以发现氢脆所产生的鼓包。介质中含氢(或硫化氢)的容器是否会发生氢脆,主要决定于操作温度、氢的分压、作用时间和钢的化学成分。温度愈高、氢分压越大,碳钢的氢脆层就越深,发生氢脆破裂的时间也愈短,其中温度尤其是重要因素。钢的含碳量越高,在相同的温度和压力条件下,氢脆的倾向越严重。钢中添加有铬、钛、钡等元素,可以阻止氢脆的产生

(58) 碱脆(Caustic embrittlement)

    碱脆,又称苛性脆化,是碳钢或合金钢在热碱溶液和应力的作用产生的一种应力腐蚀现象。钢的碱脆,一般要同时具备三个条件。一是较高浓度的氢氧化钠溶液。试验指出,浓度大于10%的碱液即足以引起钢的碱脆;二是较高的温度,碱脆的温度范围较宽,但最容易引起碱脆的温度是在溶液的沸点附近;三是拉伸应力,可以是外载荷引的应力,也可以是残余应力,或者是两者的联合作用。拉伸应力的大小虽然是碱脆的一个影响因素,但更重要的因素是应力的均匀与否,局部的拉伸应力最容易引起碱脆。碱脆通常发生在锅炉的锅筒等高温承压部件中,因为它有可能同时具备有发生碱脆的三个条件:在正常运行情况下,锅筒等承压部件就处在较高的温度和拉伸应力的作用下,而开孔接管等局部区域也存在不均匀的拉伸应力。至于锅水中的碱浓度虽然不会达到产生碱脆的程度,但在局部地方,常常会因为氢氧化钠富集而使水的碱浓度增大。例如在铆接、胀管及其它一些存在缝隙的地方,锅水进入后常被逐渐浓缩,就很有可能达到碱脆所需要的浓度。所以锅筒的碱脆绝大多数是在铆接或胀接的接缝上发生的。我国曾不止一次发生过锅炉碱脆爆炸事故,这类恶性事故国外也多次发生过。国内也有过超高压容器因稀碱液局部浓缩而引起碱脆并导致爆炸的事例。

(59)蒸气腐蚀(Corrosion by steam)

    蒸气腐蚀是锅炉在运行过程中,蒸气对高温钢构件所产生的氧化腐蚀。蒸气与高温的铁接触时,会产生下列反应:

      点此在新窗口浏览图片

    反应结果在钢件表面生成氧化膜(四氧化三铁),并放出氢原子。氧化膜在不太高的温度下可以阻止构件继续发生蒸气腐蚀。但对于碳钢,当温度超过500℃后,这种氧化膜即失去其保护作用,于是构件被继续腐蚀。而且蒸气腐蚀所产生的氢原子如不能及时被蒸气带走,就有可能渗高温的金属内,并引起氢脆。锅炉中可能产生蒸气腐蚀的部件主要有:壁温较高的蒸气过热器管、水冷壁中产生汽水分层且蒸气停滞的局部地区。防止锅炉过热器产生蒸气腐蚀的主要措施是选用铬钼合金钢。因为钢中的铬和钼能提高钢的热强性能,也可增强钢的热稳定性。

(60)焊缝系数(Welded seam efficiency)

    焊缝系数或称焊缝减弱系数,是计算焊接部件的强度时,考虑到焊缝对强度的影响而引入的一个参数。用焊缝强度与毋材强度的比值表示。实际上焊缝系数并不真正反映焊缝处材料强度被削弱的程度,而且一个经验数据,表示焊缝质量的可靠程度。根据焊接方法、坡口形式、焊后检验手段、残余应力大小等而定。根据有关标准的规定,对经检验合格的锅炉与压力容器的焊缝,焊缝系数可按以下两个表选用。

      见表

      表10-3锅炉焊缝减弱系数

     见表

      表10-4钢制压力容器焊缝系数

      注:*仅适用于厚度不超过16mm、直径不超过600mm的壳体环焊缝。

      (61)钢的可焊性(Weldabipity of steel)

    钢的可焊性是指钢材是否具有在规定的焊接工艺条件下获得质量优良的焊接接头的性能。制造锅炉与压力容器的焊接部件,材料必须具有良好的可焊性,以防产生焊接裂纹等严重缺陷。钢的可焊性主要决定于它的化学组成。其中影响最大的是含碳量。钢的含碳量越高,可焊性越差。钢中的其它合金元素成分大部分也不利于它的焊接,但其影响程度一般都比碳小得多。含碳量小于0.3%的碳钢(普通碳钢,优质碳钢)和含碳量小于0.2%的普通低合金钢,一般都具有良好的可焊性。合金钢,特别是高强度合金钢,由于加入较多的合金元素,可焊性不仅与它的含碳量有关,还与其它合金元素的含量多少有关。根据化学组成确定合金钢的可焊性,目前通用的指标是碳当量。所谓碳当量,是指钢中的含碳量与其它合金元素含量折算成相当的碳含量(根据各种元素对焊接性能的影响与碳的影响相比较进行折算)的总和。一般认为,碳当量小于0.45%的合金钢,可焊性良好。

(62)对接焊、搭焊与角焊(Butt weld、 lap weld and filled weld)

    对接焊是将两焊接构件相互对齐,在它们的对接接缝中进行焊接。厚的焊件从两面施焊,称双面对接焊,薄的焊件可采用单面对接焊。锅炉压力容器的承压部件,如筒体的纵缝、环缝、球体或封头的拼接缝以及凸形封头与筒体的接缝,一般都采用对接焊。对接焊能基本保持焊件结构形状的连续性,承载时应力分布比较均匀,所以应尽量采用。

    搭焊是将两焊接构件在接头处叠合(搭接),在焊件的端部或侧面施焊。搭焊的构件承载时接头的作用力不在同一直线或弧线上,使焊缝产生附加的剪力和弯矩。搭焊只用于一些不能对接焊的结构,如筒体或封头开孔周围的补强板等,其它情况一般不宜采用。

    角焊是两焊件成直角或一定角度组对,在其连接边缘施焊。部件采用角焊连接时,由于结构形状不连续,产生较大的不连续应力,应力集中现象严重。在一些小型锅炉或容器中,筒体与管板、筒体与平封头等必须采用角焊时,应采用全焊透结构。

(63)焊接缺陷(Weld defect)

    焊接缺陷泛指存在于构件的焊缝及其附近,因焊接而产生的一切缺陷。常见的焊接缺陷有裂纹、未焊透或未熔合、夹渣、气孔、咬边以及其它的焊接表面缺陷。其中以焊接裂纹为最严重的缺陷,锅炉和压力容器的脆性破裂事故有很多是由焊接裂纹引起的,裂纹还会加速锅炉压力容器的疲劳破裂与应力腐蚀破裂。未焊透或未溶合,性质同裂纹缺陷相同,也是一种不允许存在的缺陷。它不仅降低焊接接头的强度与塑性,而且往往是壳体开裂的起始点。焊缝咬边虽然不会明显减少焊缝的承载截面积,削弱它的静力强度,但其根部应力集中现象比较严重,也是一种脆性破裂的根源。锅炉压力容器的承压部件不允许深度大于0.5mm或连续长度超过100mm的焊缝咬边。气孔和夹渣一般属于体积型缺陷,它减弱了焊缝的承载截面积,但缺陷的端部一般不会是尖锐的缺口。气孔和夹渣缺陷较多或较大时也会影响焊件的疲劳强度。锅炉压力容器的焊缝中允许有少量的气孔或夹渣缺陷。

(64)焊缝错边与角变形(Offset and angular misalignment)

    焊缝错边是指对接焊缝中的两块接板的板没有对齐而产生的位置偏移。它虽然也可能产生在球体或圆筒体的纵接缝上,但更多的是见于筒体的环接缝口两个对接的筒节的直径偏差会产生整个接缝错边;任一节筒节的截面不圆也可以产生局部的接缝错边。接缝角变形是指对接的板边虽已对齐,但两对接板的中心线不连续,因而在外形上形成棱角。这种缺陷多产生在球体或圆筒体的纵接缝上。角变形是卷板时板边没有压成弧形,或曲率半径存在偏差而造成的。焊缝错边与角变形是锅炉压力容器在组装过程中较常见的缺陷。由于这种缺陷造成承压壳体的几何形状不连续,轻的可以降低部件的疲劳强度或疲劳寿命,严重的错边和角变形也可以直接造成压力容器的脆性断裂。在组装焊接的部件中,要求完全没有错边或角变形缺陷是难以实现的,但应该控制在一定的范围内。在锅炉和压力容器的有关规范或标准中,都规定有允许的最大偏差。

(65)消除应力热处理(Stress relif heat treatment)

    消除应力热处理就是把构件加热到能消除应力的温度范围内(碳钢为600~650℃),使材料具有良好的延性。在这种情况下,存在构件内的残余应力就会使材料产生塑性变形从而达到应力释放的目的。消除应力热处理不但可以有效地消除焊接时产生的高残余拉伸应力,改善构件因冷作而引起的硬化现象,还可以消灭或减小焊缝附近的局部脆化,使它的韧性和塑性提高到接近材料的水平。焊接压力容器是否需要进行消除应力的热处理,主要取决于它的残余应力大小以及工作介质是否具有应力腐蚀的特性。一般来说,焊件越厚,焊接残余应力就越大,所以器壁较厚的容器,应进行消除应力热处理。合金钢焊制的容器,因金属的可焊性稍差,也应在焊后进行热处理。泠成形的凸形封头或冷卷的厚圆筒,也应经过消除应力热处理。工作介质对容器材料能产生应力腐蚀时,残余应力的存在会大大加剧应力腐蚀的进程,因此这样的容器也必须进行热处理。

(66)安全泄压装置(Relief safety feature)

    安全泄压装置是装设在锅炉压力容器上,用以防止设备运行时压力超过规定最大负荷的一种保护性装置。它具有这样的性能,当承压设备或系统在正常工作压力下运行时,它保持严密不漏,而一当压力超过规定,它就立即自动地把系统内部的气体迅速排出,使设备内的压力始终保持在最高许用压力范围以内。安全泄压装置还有自动报警的功能。因为当它开放泄压时,由于气体流速较高而发出较大的音响,成为设备压力异常的讯号。锅炉以及在运行过程中器内压力有可能升高的容器,都应单独装设安全泄压装置。但如果一个连续的压力系统中有多台压力容器,它们的许用压力相同,而且气体在每个容器中又不会自行升高时,则可以在整个系统(连接管道或其中的一个容器上)内装设一个安全泄压装置。安全泄压装置的类型有阀型(安全阀)、断裂型(爆破片、爆破帽)、熔化型(易熔塞)和组合型(阀型与断裂型组合使用)等几种。

(67)压力容器安全泄放量(Safety dicharge quantity)

    压力容器安全泄放量是指压力容器在超压时,为保证它的压力不再继续升高,在单位时间内所必须排放的气量。它的单位中kg/h。压力容器装设的安全泄压装置,其排气能力(排量)应根据容器的安全泄放量来选定,即安全泄压装置的排量必须不小于容器的安全泄放量。各种压力容器的安全泄放量是按它的最大产气(或输入气体)能力来确定的。例如,锅炉的安全泄放量就等于它的蒸发量;一般的气体或水蒸气贮罐,安全泄放量就是它在单位时间内由产生气体压力的设备(如压缩机、锅炉等)所能输入的最大气量(按进气管径及压力考虑);周围环境有发生火灾可能的液化气体贮罐,安全泄放量按容器周围发生火灾的情况下罐内液体的吸热蒸发量考虑;而器内有发生分解、放热等化学反应的容器,安全泄放量就是它在单位时间内所能产生的最大气量。

      (68)安全阀(Relief valve safety valve)

      安全阀是锅炉压力容器最常用的一种安全泄压装置。它是通过阀的自动开启排放气体来降低容器内的压力的。安全阀由三个主要部分构成,即阀座,阀瓣和加载机构。工作时阀座和容器连通,阀瓣(常常带有阀杆)紧扣在阀座上,并利用砣上面的加载机构的压力来保持密封。加载机构的载荷大小是可调节的。当容器内的压力在规定的工作压力范围以内时,内压作用于阀瓣上的力小于加载机构施加在它上面的力,两者之差构成阀瓣与阀座之间的密封力,使阀瓣紧压阀座,容器内的气体无法排出。而当器内的压力超过规定的工作压力时,内压作用在阀瓣上的力就大于加载机构施加之力,于是阀瓣离开阀座,安全阀开启,容器内的气体即通过阀座排出。待器内压力下降以后,阀瓣又紧压着阀座,容器又保持密封状态。与其它类型的安全泄压装置相比较,安全阀的特点是它仅仅泄放容器内高于规定的部分压力,而一当器内压力降回至正常操作压力时,它即自动关闭,容器又继续运行,可以避免容器因超压排出全部气体而中断生产。由于这个原因,安全阀被广泛用于各种压力容器中。安全阀的缺点是:密封性能较差,在正常工作压力下也难免有微量泄漏;由于开闭机构的滞后作用,它不能用于压力急剧升高的反应容器;当介质是一些不洁净的气体时,阀座有被粘结或堵塞的可能。按整体结构及加载机构的形式,安全阀有杠杆式、弹簧式与脉冲式三种。

      (69)杠杆式安全阀(lever safety valve)

      杠杆式安全阀利用重锤和杠杆作加载机构。杠杆的作用是可以使用重量小的重锤通过杠杆原理获得较大的载荷(即施加在阀瓣上的作用力),以减小安全阀的自重和体积。还可以通过移动重锤在杠杆上的位置,来调整校正安全阀的整定压力。杠杆式安全阀结构简单,调整容易而又比较准确,加载机构的作用力不因阀瓣的开启而增加,又适宜用于温度较高的场合下,因此过去用得比较普遍,特别是用在锅炉或工作温度较高的压力容器上。但它也存在不少的缺点:结构比较笨重,重锤与阀体的尺寸很不相称,用于压力较高场合下就受到限制。它的加载机构(在长的杠杆上悬挂着重锤)常因振动而造成阀的泄漏。由于对振动比较敏感,杠杆式安全阀不宜用于移动式容器,如火车罐车,汽车罐车等。特别是可燃液化气体罐车更不能使用。这种结构的安全阀,目前国内尚无批量生产,只有少量的产品与锅炉配套供应。

      (70)弹簧式安全阀(Spring loaded safety valve)

      弹簧式安全阀的加载机构是一个螺旋圈形弹簧,利用压缩弹簧的弹力来平衡作用在阀瓣上的力。通过调节弹簧压紧螺母(调整螺母),可以增加或降低弹簧的弹力,从而能按需要校正安全阀的整定压力。弹簧式安全阀结构轻便紧凑,灵敏度也比较高,安装的方位不受严格限制,而且对振动的敏感性差,可以用于移动式压力容器。这种安全阀的缺点是所加的载荷会随着阀的开启而发生变化。因为阀瓣开启升高,弹簧的压缩量即增大,作用在阀瓣上的力也跟着增加,这不利于安全阀的迅速开启。另外,阀上的螺旋形弹簧用于温度较高的场合时,会因长期受高温的作用而致弹力减小,甚至消失。这样,高温容器使用的安全阀就得考虑弹簧的隔热或散热问题,至使它的结构变得复杂起来。目前国内压力容器上使用的安全阀绝大部分是弹簧式安全阀。

      (71)脉冲式安全阀(Pilot operated safety valve)

      脉冲式安全阀也称先导式安全阀,由主阀和辅阀组合构成,通过辅阀的先导作用驱动主阀动作。主阀和辅阀分别用管道与容器相连。辅阀是一个小型的杠杆式或弹簧式安全阀。当容器内的压力超过规定的工作压力时,辅阀首先开启,排出的气体进入主阀的活塞室,活塞在气体的压力作用下,通过阀杆将主阀的阀瓣顶开,大量气体即从主阀排出。在器内压力降回至工作压力以后,辅阀关闭,主阀活塞室内的气体压力降低,主阀随即闭合,容器连续运行。脉冲式安全阀结构复杂,但它的排量很大,启闭的延迟作用较小,一般用于电站锅炉或安全泄放量很大的压力容器。

      (72)微启式安全阀与全启式安全阀(Low lift safety valve and full bore safety valve)

      根据安全阀阀瓣最大开启高度的大小,安全阀又有微启式与全启式之分。全启式是指它的阀瓣开启高度已经使阀的帘面积(即阀瓣与阀座间的环形面积)大于或等于阀的流道截面积,即已经完全开启。因为阀的间隙面积为πd h(d为阀孔直径,h为阀瓣最大开启高度),而阀的流道面积为πd2/4,因此要达到阀的帘面积不小于阀的流道面积的条件便是h≥d/4也就是全启式安全阀的最大开启高度应不小于阀孔直径的1/4。要使安全阀的开启高度达到孔径的1/4以上,必须在阀的封闭机构中有帮助阀瓣升高的辅助结构。它可以通过两种途径,一是增加气体压力所直接作用的面积,二是利用气流转向对阀瓣产生反作用力。所以全启式安全阀的封闭结构比较复杂,在阀座及阀瓣上都增设调节圈,以实现上述两种作用。微启式的封闭机构就比较简单,制造、维修和调整都比较方便,但它的开启高度一般都小于d/20。所以它的排气能力就要比全启式安全阀小得多,因而只宜用于排量不大、要求不高的场合。目前,大多数压力容器及锅炉所用的安全阀都是全启式安全阀。

      (73)全封闭、半封闭与敝开式安全阀(Clossed、half clossed and open type saf—ety valve)

      安全阀和各种类按照气体排放的方式又可以分为全封闭式、半封闭式与敝开式三种。全封闭式安全阀排出的气体全部通过排气管排至室外安全地带,整个阀各连接处密封良好,介质不会通过各连接处的间隙向周围泄漏。这种安全阀主要用于有毒、易燃气体的容器上。半封闭式安全阀各连接处的间隙不太严密,主要是防止尘土等杂物进入阀内阀开启排气时,气体也可能有一部分从阀盖与阀杆之间的间隙中漏出,多用于不会污染环境的气体。敝开式安全阀的阀盖是敝开的,弹簧室与大气相通,目的是降低弹簧腔内的温度。多用于蒸气及高温气体容器。

      (74)安全阀排量(Flow capacity of safety valve)

      安全阀排量是指它完全开启时,在排放压力下,单位时间内所能排出的气体流量。一般称为安全阀的额定排量,单位是kg/h。额定排量是安全阀的一个重要参数,它不但决定于气体的温度、压力等工艺参数,还和安全阀的结构型式和完善程度有关。锅炉压力容器选定或校核安全阀规格时,常常要对安全阀的排量进行计算,以便与容器的安全泄放量进行对比。对于一般的安全阀(指出口侧为大气压力或压力不太大的密闭系统),其排量可以按下式计算:

      点此在新窗口浏览图片

      式中,P为安全阀的绝对排放压力;T为排气的绝对温度(K);M为分子量;A为安全阀的最小流通面积。

      全启式安全阀,A=πd2/4;微启式安全阀,A=πd

[1] [2] [3] 下一页

资讯录入:admin    责任编辑:admin 
  • 上一篇资讯:

  • 下一篇资讯:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    不良信息
    举报中心
    机电之家设备管理网
    致力于机电设备维修与管理技术
    网络110
    报警服务
    服务热线:0571-87774297 传真:0571-87774298 电子邮件:donemi@hz.cn 服务 QQ:66821730
    机电之家(www.jdzj.com)旗下网站 杭州滨兴科技有限公司提供技术支持

    版权所有 Copyright © 机电之家--中国机电行业门户·设备维修与管理

    主办:杭州高新(滨江)机电一体化学会
    浙ICP备05041018号