|
设
备
管
理
网
s
b
g
l
.
j
d
z
j
.
c
o
m
|
 |
高压变频装置在送吸风机上的应用及注意事项(1) |
|
|
高压变频装置在送吸风机上的应用及注意事项(1) |
|
作者:佚名 文章来源:不详 点击数: 更新时间:2008-9-26 20:16:20  |
|
姚 岚,刘文忠
(河北马头电力股份有限公司,河北邯郸056044)
摘 要:介绍了完美无谐波变频器的工作原理及在送吸风机上的应用,对变频器安装、调试等阶段中出现的问题进行了讨论并提出建议。实践证明,电机变频调速是有效的节电措施。 关键词:风机;高压变频器;调速;节能
Abstract:The paper introduces the working principle of perfect and no harmonic inverter and the application on fans. It also recounts the questions in the period of designing, putting into commission and other period , and raises recommends . Practice proves that is the effective means to adopt highvoltage inverter to adjust speed. Keywords:fan;high voltage inverter;speed adjustment;energy saving
1风机概述 河北马头电力股份有限公司8号机组容量为200 MW,锅炉配离心式送吸风机各2台,主要参数见表1。风机采用传统的挡板调节来控制风量,风道压流损失较大,是一种经济效益差、耗能大、维护难度大的调节方式。风机厂用电率约为2.1%,负荷低时耗电率会更高。因此2004年底机组大修时,决定对8号炉送吸风机进行调速控制改造,降低能耗,同时配合机组的DCS改造,改善风机的调节性能,稳定锅炉的燃烧,提高经济效益。 通过对斩波内馈、变频和液力偶合器等各种调速方式的比较,最终选用变频调速方式,通过招标确定采用罗宾康公司多重化结构、36脉冲高-高电压源型、完美无谐波变频装置,容量与送吸风机配套,分别为1 750和2 000 MV·A。这样可以保证原送吸风机及电动机基础不变,只在原断路器和电动机之间串入变频装置即可。
2高压变频装置的应用情况 2.1变频调速的基本原理 异步电动机的转速n与电源频率f、转差率s、电机磁极对数p 3个参数有关,即n=60f/p×(1s)。变频调速是通过改变电源频率f来调节电动机转速的。可以看出,n 与f之间为线性关系,转速调节范围宽。对于风机,由气体动力学理论可知,气体流量与风机转速的一次方成正比,风机的转矩与转速二次方成正比,而其轴功率则与转速的三次方成正比,当转速减小时,电机的输出功率将以三次方下降,节电效果非常显著。 2.2变频系统构成 2.2.1变频部分 由控制机柜、功率单元柜组成。安装在输出功率单元内的单元控制板通过光纤与控制柜内的数字调制器通讯。所有板的控制电源由单元控制板上的开关电源提供。
2.2.2输入隔离变压器部分 6 kV输入、输出电源均从此柜引出,变压器共有18个二次绕组,采用延边三角形接法, 分为6个不同的相位组, 互差电角度30 °。 2.2.3旁路单元 由旁路单元柜构成,内部设置进出线及旁路刀闸,出线刀闸与旁路刀闸实现互锁,当变频装置故障时,可以不影响风机的工频运行。送吸风机变频装置一次系统构成见图1。
2.2.4I/O部分 与DCS及高压开关接口的控制回路,包括模拟量输入/输出如转速给定、变频器输出电流和输出功率等,开关量输入/输出,如变频器启停、变频器异常报警和跳闸等信号。可以实现风机的远方顺启、顺停及调速控制。 2.3多功率单元串联变频装置的工作原理 6 kV变频装置共有18个单元,每6个功率单元串联构成一相,每个功率单元结构上完全一致,可以互换,其电路结构见图2。整流桥采用三相不可控全桥,逆变部为基本的交-直-交单相逆变电路,通过IGBT逆变桥进行正弦PWM控制,即脉冲宽度调制,通过控制电力电子器件的通、断时间及通断次序将直流电压转换为一系列宽度不等的矩形电压脉冲。
6 kV电网电压经输入隔离变压器的18个二次线圈,移相降压后给各功率单元供电,形成36脉冲的二极管整流电路结构,总的输入谐波电流失真很低;逆变器采用多电平移相式PWM技术,每个功率单元额定电压630 V,每相6个,因此相电压为3 780V,对应的线电压为6 600 V,相邻功率单元的输出端串联起来,形成Y型结构,实现变压变频的高压直接输出,供给高压电动机。 由于给功率单元供电的输入变压器二次线圈互相存在一个相位差,实现了输入多重化,由此可大大减弱电网侧电流谐波,功率因数可达0.95以上。变频器输出侧多重化,可以在不加滤波器的情况下,将输出电压谐波控制在2%以内,输出近乎完美的正弦波,满足普通异步电机的需要。
[NextPage]
2.4变频装置的运行情况 随8号机组大修后启动运行, 8号炉送吸风机全部投入变频运行,断路器K1、K2在合位,工频旁路刀闸K3在断开位置。当变频器发生故障或检修需要倒为工频旁路运行时,应先将变频器停运,将对应的6 kV开关停电后才能进行工频旁路刀闸的倒换,严禁在运行中进行方式倒换。变频器出线刀闸K2与工频旁路刀闸K3之间装有机械闭锁。 为提高机组自动化程度、减轻运行人员的劳动强度,机组启动与停止均执行顺控功能。如吸风机启动步序为:关吸风机入口挡板;变频器速度给定值等于设定的最低转速;启动吸风机6 kV开关;延时3 s启动吸风机变频器;延时5 s后开启挡板至100%。风机停运的顺序则与上述过程相反,且采用变频器受控停车方式,在150 s内电动机转速即可下降到零。受控停车时间的长短与风机停运前负荷状况有关。送吸风机的转速调节可以根据炉膛负压的变化自动进行。 8号发电机负荷为16
|
|
文章录入:admin 责任编辑:admin |
|
|
上一篇文章: 小火电并网有关问题的分析与措施(1)
下一篇文章: 发电机匝间短路保护动作的分析(1) |
|
|
【字体:小 大】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】 |
|
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) |
|
|
|
|