机电之家行业门户网运行
文章 下载
最新公告:

  没有公告

设备维修与管理培训
您现在的位置: 设备维修与管理 >> 监测诊断 >> 设备监测诊断 >> 监测诊断技术 >> 文章正文
 
赞助商
 
 
最新文章
 
 通信设备用阀控密封蓄电池的维护
 ADSL设备维护经验集锦
 用0-1规划求解馈线自动化规划问
 10kV架空线配电自动化系统的初步
 智能建筑中办公自动化系统的分析
 配电网自动化及其实现
 馈线自动化的最优控制模式
 配电网自动化载波通信在线路故障
 我国配电网自动化的现状及发展方
 西北地区农网馈线自动化途径
 
推荐技术
 
 
相关文章
 
基于ASAP标准的发动机标
金属磁记忆方法-设备和金
基于组态王的大型烟机监
 
客户服务
 
如果您有设备方面好的文章或见解,您可以送到我们的投稿信箱
客服电话:0571-87774297
信   箱:88ctv@163.com
我们保证在48小时内回复


s

b

g

l

.

j

d

z

j

.

c

o

m

 

添加诊断能力,以MAX14XX低成本高性能信号调节器           ★★★
添加诊断能力,以MAX14XX低成本高性能信号调节器
作者:佚名 文章来源:网络 点击数: 更新时间:2009-9-15 18:15:40

 

Adding Diagnostic Capability to MAX14XX Low Cost High Performance Signal-Conditioning Devices

Abstract: A cost-effective procedure for adding system diagnostic, product diagnostic, output drift check, auto-zeroing capability, etc., to your products which are based on the MAX1478, MAX1452, MAX1455, MAX1457, and MAX1463 family of high-performance signal conditioning products without changing the test system or adding significant time to the calibration process.

This approach takes advantage of built-in nonvolatile flash memory included in these low-cost signal conditioners. The concept is implemented by making an accurate measurement of the output voltage at predefined reference conditions and storing it in the flash memory for future reference.

This application note describes a simple and cost-effective procedure for adding diagnostic checks to determine product functionality and sensor output drift. This enhancement can be added to any MAX14XX device with nonvolatile memory without changing the test system or adding significant time to the calibration operation.

MAX14XX signal-conditioning devices are generally used in conjunction with pressure sensors to correct their inherently large temperature error. Although the same principle applies to other types of sensors, this document refers solely to pressure-sensor applications for the sake of simplicity.

Benefits of Adding Diagnostic Capability

  • Checking the functionality of the signal-conditioning device.
  • Indicating the level of error after calibration.
  • Indicating drift in the sensor output. This is desirable especially in the case of absolute-pressure sensors, because loss of reference vacuum can cause output drift, which may not be easily detectable after calibration.
  • Verifying proper functioning and troubleshooting the test system. Changes in output voltage in the reference condition could provide hints of inaccurate pressure setting, incorrect VDD, malfunctioning ASIC, etc.

Overview

Maxim's MAX14XX series of smart signal-conditioning products include nonvolatile memory that can be used to store product-run information and calibration values. Once the device is calibrated, the output voltage (VCAL) of the device should be measured under reference conditions and the value of VCAL written to memory. Reference temperature and pressure conditions should be chosen to minimize the influence of the test system on the reference conditions. For gage-pressure devices, reference conditions are usually room temperature and atmospheric pressure. For highly accurate products, room temperature may need to be controlled and atmospheric pressure measured independently. When it comes to absolute-pressure sensors, a repeatable reference pressure must be chosen (it may not be atmospheric pressure).



Reference Temperature

Controlling the reference temperature is especially necessary for devices with a large temperature coefficient. To minimize the overhead associated with the generation of VCAL, the last calibration temperature can be used as the reference. A reasonable choice is 25°C, because it is easy to achieve and control and it is used as the reference for most specifications.

Reference Pressure

  • For gage-pressure sensors, use atmospheric pressure.
  • For absolute-pressure sensors, absolute (not gage) pressure must be used and controlled to the desired accuracy. To minimize the effect of any possible leak in the system, a pressure close to the atmospheric pressure is recommended (100kPA).
  • For high-pressure sensors, atmospheric pressure can be used.

Procedure for Setting Up Reference Voltage

  1. Complete the compensation/calibration as this is normally done.
  2. Apply the reference pressure and the temperature condition to the device.
  3. Read the output voltage to the desired accuracy.
  4. Store the output voltage, VCAL, in the memory.

Procedure for Using Reference Voltage

  1. Apply the reference condition to the device.
  2. Measure the output voltage, Vout.
  3. Read VCAL from memory.
  4. Compare the VOUTand VCAL values, dVOUT = VOUT- VCAL.
  5. Take any specified action based on the value of dVOUT. For example, shut down the system, call the operator, ignore the device output, etc.
文章录入:admin    责任编辑:admin 
  • 上一篇文章:

  • 下一篇文章: 没有了
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    不良信息
    举报中心
    机电之家设备管理网
    致力于机电设备维修与管理技术
    网络110
    报警服务
    服务热线:0571-87774297 传真:0571-87774298 电子邮件:donemi@hz.cn 服务 QQ:66821730
    机电之家(www.jdzj.com)旗下网站 杭州滨兴科技有限公司提供技术支持

    版权所有 Copyright © 机电之家--中国机电行业门户·设备维修与管理

    主办:杭州高新(滨江)机电一体化学会
    网站经营许可证:浙B2-20080178-1