机电之家行业门户网运行
文章 下载
最新公告:

  没有公告

设备维修与管理培训
您现在的位置: 设备维修与管理 >> 设备管理 >> 管理论文 >> 设备维修论文 >> 资讯正文
 
赞助商
 
 
最新文章
 
 涤纶工业长丝纺丝机用变频器、可
 PLC实现变频调速器多电机控制
 啤酒糖化绞笼吹气出槽改用LOGO!
 PLC控制步进电机在机床自动线中的
 应用PLC改进绕线式电动机起动控制
 KDN-K3系列PLC在热封切袋机中的应
 GEO系列旋转包装机计量控制系统的
 PLC在轧钢生产故障诊断中的应用研
 浮法玻璃生产线的智能自动化技术
 多串口PLC在电池混料搅拌中的应用
 
推荐技术
 
 
相关文章
 
PLC实现变频调速器多电机
啤酒糖化绞笼吹气出槽改
PLC控制步进电机在机床自
用PLC控制变频调速技术改
PLC在矿井主排水控制系统
PLC在数控系统点位控制中
KDN-K3系列PLC纺织机械控
PLC的双CPU冗余控制实现
喷泉控制系统
液压机械控制
 
客户服务
 
如果您有设备方面好的文章或见解,您可以送到我们的投稿信箱
客服电话:0571-87774297
信   箱:88ctv@163.com
我们保证在48小时内回复


s

b

g

l

.

j

d

z

j

.

c

o

m

 

[组图]PLC在连铸结晶器液位自动控制系统中的应用           
PLC在连铸结晶器液位自动控制系统中的应用
作者:佚名 文章来源:网络 点击数: 更新时间:2009-5-31 8:24:04

1 引言
结晶器钢水液面检测为钢水液面高度控制提供依据,是连铸的关键技术之一。它在保证连铸机安全、可靠的运行,改善铸坯的质量,提高铸机的生产率及改善操作条件等方面,都起很重要的作用。
用于结晶器钢水液面高度检测装置有:同位素式钢水液面计,电磁式钢水液面计,电涡流式钢水液面计,热电偶式、超声波式、红外辐射式、电极跟踪式、浮子式等。
包钢连铸机于1997年建成投产,共有方、圆坯2台铸机,年设计生产能力为120万吨。其中结晶器液位采用自动控制,该系统属于同位素式钢水液面计(或称Co60液面控制系统),其基本原理如图1所示。

如图1所示,结晶器液面检测仪由放射源、探测器、信号处理及输出等部分组成。放射源,采用Co60放射元素,利用其发射出的γ射线穿过被测钢液时一部分被吸收,而使γ射线强度变化,其变化规律是随着钢水液面高度的增加,能吸收γ射线的区域扩大,γ射线强度减弱的越多。检测出γ射线强度变化,就可以转换出钢水液面高度的变化,然后将信号送塞棒液压缸的伺服阀,使液压缸塞棒动作,依此调节中间包流入结晶器中的钢水流量,达到控制结晶器中钢水液面高度的目的。
包钢连铸机的结晶器液面控制系统能够保证结晶器液位在±3mm的范围内波动,控制精度高,液面波动小所以铸坯的表面质量好,同时减少溢漏钢事故的发生,并且该系统具有先进的自动开浇功能。该系统对保证铸坯质量和产量,减轻操作工人劳动强度具有重要意义,因此必需保证结晶器液位自动控制系统的正常运行。

2 工作原理及使用情况
2.1 工作原理
结晶器自动控制的执行机构为塞棒系统,其自动控制

图2 结晶器液位自动控制系统工作原理图

系为模糊控制器,详细工作原理框图如图2所示。
2.2 使用情况
该系统具有控制精度高,响应速度快等优越性能,但由于原程序设计存在一定的缺陷,导致经常出现自动控制信号突然消失的故障,造成停浇、漏钢等故障,严重影响铸机的正常生产和铸坯质量,尤其对方坯重轨钢的生产影响非常大,因此有必要对产生该故障的原因进行分析,并从根本上加以解决。

3 常见故障分析及解决方案
3.1 程序介绍
结晶器液位自动控制是一个非常精密的系统,对相关器件的要求比较严格,因此在程序中对实现结晶器液位自动控制的条件进行了要求,相关程序在PB10-S17, 如图3所示。

图3 结晶器液位自动控制示意图
其中:
F158.7 结晶器液位控制故障
F11.4 结晶器液位刻空
F159.0 射源已打开
F20.0 塞棒零点测试正运行
F21.2 塞棒零点测试正常
F151.0 中包车1在浇铸位
F151.1 中包车2在浇铸位
F10.0 自动信号
当上述各条件中任意一个不满足时,都会导致自动信号消失,为了查清造成自动信号消失的故障来源,需要先临时加装一段监视计数程序,该程序能够记录是由哪一个条件引起的故障,经该程序运行跟踪发现:引起自动控制信号消失的条件:中包车塞棒液压缸自动测试正常,即F21.2,现在问题的关键就是对F21.2这个标志进行研究.
3.2 关于F21.2
F21.2是代表“中包车塞棒液压缸自动测试正常”的一个标志,具体的意思就是在开浇前中包车打车过程中对塞棒液压缸进行自动测试,以检验液压缸是否能满足结晶器液位自动控制的需要,测试内容包括3步:
l 液压缸开启度≥85%
l 液压缸上下腔压力差ΔP≥35bar或液压缸速度V≤100mv/s
l 此时液压缸零位在35%—65%之间
当塞棒自动测试依次满足上述3个条件后,F21.2变为‘1’,表示塞棒液压缸工作正常能够满足结晶器液位控制的需要。
3.3 故障原因
原程序中F21.2这一标志的设计上,未采用触发器保护信号,而是直接采用信号传递置位,其程序框图如图4所示。

图4 未采用触发器的程序框图
这样的程序设计有如下缺陷:
l 干扰信号有可能造成零位信号消失,从而影响自动控制
l 在工作中如果压力传感器等器件有问题也可能造成误动作信号
经过跟踪观察,结晶器液位自动控制信号消失就是由原因1造成的,因此有必要对这一部分程序进行修改完善。
3.4 改造方案
对有关F21.2的产生程序进行修改,加SR触发器对信号加认保护,屏蔽干扰信号,其作用就是保证在塞棒175494e-38到 3.402823e+38,占1个32位字。浮点数在寄存器中32位的空间表示为:
S xxxxxxxx mmmmm
上面: s=符号 x=指数 m=尾数
可见用浮点数表示的值的十进制有效位数只有7位。因此,必须考虑有效位数问题。举例如下:
假设A代表计算的总流量,F代表计算上一次累加的流量,把F加到A上就会计算出一个新的总流量。在控制器的存储器中,A和F使用浮点数文件格式,有效数字是7位。一旦A比F大很多时,那么A和F的加数将会产生误差。
请看计算过程:
A=3.632523E+9
F=4.978E+3
3,632,523,000
+ 4,978
3,632,527,978
因为这个结果只能保留7个有效位,所以舍去最后几位数,写成3.632527E+9或3,632,527,000,数值978被丢失。为了避免出现这个问题,我们可以想办法使A和F在整个运算过程中不出现小数,数值不超过7个有效位。
4 结束语
流量累积的运算,要尽量避免计算过程中的误差,一是要选择正确的文件存储格式,二是要避免运算值超出数值范围和有效位数范围,三是尽可能减少采样时间的定时器带来的误差。在上面PLC5/40C的梯形逻辑中,我们按照以上几个原则,经过细致的考虑和计算,使用长预置值的参考定时器,并使所有被用到的浮点数文件的值的有效位数不超出范围,不出现小数,避免了丢失小的数值,从而实现高精度的累积运算,满足了工艺要求。

资讯录入:admin    责任编辑:admin 
  • 上一篇资讯:

  • 下一篇资讯:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    不良信息
    举报中心
    机电之家设备管理网
    致力于机电设备维修与管理技术
    网络110
    报警服务
    服务热线:0571-87774297 传真:0571-87774298 电子邮件:donemi@hz.cn 服务 QQ:66821730
    机电之家(www.jdzj.com)旗下网站 杭州滨兴科技有限公司提供技术支持

    版权所有 Copyright © 机电之家--中国机电行业门户·设备维修与管理

    主办:杭州高新(滨江)机电一体化学会
    网站经营许可证:浙B2-20080178-1