1 引言 凌钢1#高炉热风炉系统由3座内燃改造式热风炉组成,其煤气系统、助燃风系统、冷风、热风混风系统的切断阀采用电动和液压传动阀门,设计送风温度为1100℃,采用分离式热管余热回收数量。 热风炉控制系统是高炉自动化系统工程中基础自动化子系统,它采用美国A-B公司的PLC-5可编程控制器,Ethernet高速数据工业局域网和OS监控系统。热风炉自动控制系统由仪控和电控两部分组成。仪控主要完成工艺生产过程参数控制和调节阀的自动调节及控制。电控主要完成换炉自动控制。 2 自动化系统组成 PLC-5系列可编程序控制器是美国A-B公司在20世纪80年代后期开始推出的产品,是一种既可进行顺序控制和程序控制,又可进行闭环过程控制的高档的半型可编程控制器。它不仅具有一个功能强且完善的指令系统,而且易于扩展、具有模板插件型结构。适用于各种被控对象与生产过程。 多平台开发软件,在高层编程软件支持下,可方便对其梯形图编程,顺序功能流程图编程,实现模块化编程,工作站采用多用“20”彩色图形工件站,通过Ethernet的工业局域网,实现对生产自动化过程监控和管理,见图1。 图1 系统框图 3 主要控测项目和控制 热风炉主要是为高炉提供稳定高温的热风,主要检测项目有拱顶温度、废气温度、换热器助燃风出/入口温度、换热器废气入/出口温度、煤气和助燃风压力、流量、冷却水压力、流量等。控测信号进入PLC后进行线性化计算,气体流量温度与压力补正,并在上位工作站OS上显示所有数据。 (1) 热风炉送风自动控制 热风炉是蓄热式的,它交替工作,有“燃烧”、“送风”和“闷炉”(过渡状态)三种状态。状态的变换是根据工艺、设备和安全的要求。热风炉控制系统为两烧送的送风制度,送风温度由送风炉出口的不同风温混合而成。当送风温度低于设定值,调节冷风调节阀开度。当送风温度高于设定值时,还必须渗入一定的冷风。
4 换炉控制系统 热风炉换炉可以有“全自动”(定时换炉,三个热风炉顺序转换)、“单炉自动”(只该热风炉自动转换状态,但要操作台主按相应按钮起动)、“遥控手动”(操作台上单个阀控制,此时仍保持阀间联锁)、“机旁手动”(只控修时使用,各阀除联锁)等四种操作方式。 (1) 全自动操作方式 在3座热风炉同时工作时,可选择两烧一关变风量,操作人员在OS工作站上设定换炉时间,周期地进修全自动操作。例如,由“燃烧”转为“送风”的顺序为:关闭煤气、空气切断阀和燃烧阀→延时若干秒后关闭烟道阀(至此各阀关闭而转入“阀炉状态”)→开启冷风旁通阀(进入灌入冷风)→延时若干秒后开启热风阀→打开冷风阀→关闭冷风旁通阀;而“送风”转入“燃烧”的顺序为:关冷风阀→关热风阀→开废气阀(放去炉内延留废气)→延时若干秒均压后开烟道阀→关废气阀→开煤气切断阀、燃烧阀(煤气调节阀微开若干秒,点火后全开)→开空气燃烧阀。各阀顺序动作,具有一定联锁,特别须防止有关燃烧各阀未关时开启送风有关各阀或其相反动作; (2) 单炉自动操作 操作人员在OS工作站上调出各热风炉单炉自动操作通;根据热风炉初始工作状态选择日的工作状态。例如:焖炉→燃烧、燃烧→焖炉,焖炉→送风,送风→焖炉、送风→隔离、燃烧→隔离等多种转换状态,各阀门按规定的程序动作; (3) 遥控手动 操作人员在OS上位工作站通过功能键选择联锁手动操作方式,根据热风炉初始工作状态选择要转换目的工作状态。在热风炉值班室OS上位工作站上对各阀门进行单个开、关遥控操作。为确保人身和设备安全,所有阀门的开、关都是在满足必要联锁条件下执行; (4) 机旁手动 使用现场控制箱上的按钮,可单独操作所有阀门设备,各阀门间的联锁关系全部解除,只是在发生故障和阀试检修时使用。 上述操作均在热风炉值班室OS上位工作站上,操作十分方便,画面清晰。上位机监视操作画面,方便于值班人员检查、操作热风炉生产工况、事故报警、诊断等。 监视画面根据工艺生产工况,包括有:热风炉工艺流程总貌;热风炉单体工作状态画面;热风炉换炉顺控画面;热风炉工艺参数:温度、压力、流量等数据显示画面;工艺参数趋势记录画面;事故报警记录画面等。 5 结束语 目前,本PLC系统已成功应用于凌钢1号380m3高炉的热风炉控制中,经调试使用,系统运行良好,满足了用户的要求。 参考文献 [1] 汪晓光,孙晓瑛,王艳丹. 可编程控制器原理及应用[M]. 北京:机械工业出版社,1996. 作者简介 刘艳莉 电气工程师 91年大学毕业后一直从事电气设计工作,独立承担各种大小规模设计任务一百多余项。
|