机电之家行业门户网运行
文章 下载
最新公告:

  没有公告

设备维修与管理培训
您现在的位置: 设备维修与管理 >> 设备管理 >> 基础管理 >> 润滑管理 >> 资讯正文
 
赞助商
 
 
最新文章
 
 设备管理中存在的问题及改进措施
 探索设备备件更换规律,实现设备
 创新设备管理 提升竞争优势
 设备管理关乎企业效益
 TPM自主保全实践的探索与思考
 驱动离心泵的电机电流高的原因及
 离心泵运行时不打量的原因
 离心泵一般容易发生的故障有哪些
 离心泵各零部件的检修标准
 计量泵的常见故障及处理方法
 
推荐技术
 
 
相关文章
 
设备管理中存在的问题及
探索设备备件更换规律,
创新设备管理 提升竞争优
设备管理关乎企业效益
TPM自主保全实践的探索与
驱动离心泵的电机电流高
离心泵运行时不打量的原
离心泵一般容易发生的故
离心泵各零部件的检修标
计量泵的常见故障及处理
 
客户服务
 
如果您有设备方面好的文章或见解,您可以送到我们的投稿信箱
客服电话:0571-87774297
信   箱:88ctv@163.com
我们保证在48小时内回复


s

b

g

l

.

j

d

z

j

.

c

o

m

 

弹性流体动压润滑         ★★★
弹性流体动压润滑
作者:未知 文章来源:网上搜集 点击数: 更新时间:2006-11-16 20:23:36
当滚动轴承、齿轮、凸轮等高副接触时,名义上是点、线接触,实际上受载后产生弹性变形,形成一个窄小的承载区域。弹性变形引起的接触区域增大和接触区表面形状的改变,都有利于润滑膜的形成。
    由于载荷集中作用,接触区内产生极高压力,其峰值甚至可达几千兆帕。压力引起接触区内润滑剂的粘度的增大是极为显著的,比常温常压下的粘度要大几百几千倍。一般,粘度随压力按指数规律增大。同时,接触区摩擦产生的温度很高,又会减低润滑剂的粘度。
    因此,在这种情况下的弹性效应、粘-压效应、粘-温效应等是不能忽略的。考虑了这些效应的流体动压润滑就称为弹性流体动压润滑。这是近40年来人们所发现并取得突破进展的新研究领域。
    在弹流润滑的接触区中,油膜厚度在μm级,很薄,仅为接触区宽度的千分之一到百分之一。为求得接触区的油压、变形和膜厚,要联立求解雷诺方程、弹性方程,如果考虑温度的影响(热弹流润滑),还要联立能量方程和热传导方程等,成为一个复杂和困难工作。这个工作一般是利用计算机进行数字求解的。

    1.格鲁宾(Grubin)近似解
    在艾特尔研究工作的基础上,格鲁宾等首次将雷诺方程与赫兹弹性变形以及粘度-压力关系联系起来,求解了线接触的等温全膜弹流问题,求得了膜厚计算的近似解,简介如下。
    1)考虑了粘压关系的雷诺方程
将巴露斯提出的粘压关系式η0=η0eap代入一维雷诺方程:
 
    当滚动轴承、齿轮、凸轮等高副接触时,名义上是点、线接触,实际上受载后产生弹性变形,形成一个窄小的承载区域。弹性变形引起的接触区域增大和接触区表面形状的改变,都有利于润滑膜的形成。
    由于载荷集中作用,接触区内产生极高压力,其峰值甚至可达几千兆帕。压力引起接触区内润滑剂的粘度的增大是极为显著的,比常温常压下的粘度要大几百几千倍。一般,粘度随压力按指数规律增大。同时,接触区摩擦产生的温度很高,又会减低润滑剂的粘度。
    因此,在这种情况下的弹性效应、粘-压效应、粘-温效应等是不能忽略的。考虑了这些效应的流体动压润滑就称为弹性流体动压润滑。这是近40年来人们所发现并取得突破进展的新研究领域。
    在弹流润滑的接触区中,油膜厚度在μm级,很薄,仅为接触区宽度的千分之一到百分之一。为求得接触区的油压、变形和膜厚,要联立求解雷诺方程、弹性方程,如果考虑温度的影响(热弹流润滑),还要联立能量方程和热传导方程等,成为一个复杂和困难工作。这个工作一般是利用计算机进行数字求解的。

    1.格鲁宾(Grubin)近似解
    在艾特尔研究工作的基础上,格鲁宾等首次将雷诺方程与赫兹弹性变形以及粘度-压力关系联系起来,求解了线接触的等温全膜弹流问题,求得了膜厚计算的近似解,简介如下。
    1)考虑了粘压关系的雷诺方程
将巴露斯提出的粘压关系式η0=η0eap代入一维雷诺方程:

    这个方程就是置换后的考虑了压力-粘度关系的一维雷诺方程,这个方程与等粘度的雷诺方程的形式相同,只是因变量用诱导压力q来代替p。
如果两表面均运动,其运动速度分别为u1与u2,则式中的u可以用(u11+u2)/2 代替,即
式中 ηp-压力为p时油的动力粘度;
    η0-大气压下油的动力粘度;
    α-油的压粘系数。
    2)线接触的弹性变形
    根据弹性理论,一个弹性圆柱和刚性平面线接触时,当施加载荷W以后,两表面相互挤压产生变形,在宽度为2a 的接触平面上,接触应力按椭圆分布,此时在接触应力作用下,接触区以外的表面也要产生变形,结果使表面的曲率半径增大。此时在接触区以外x处的间隙h的方程为:

式中 W-单位宽度上的载荷;
    E'-当量弹性模量,
   υ1-材料1的泊松比;
   υ2-材料2的泊松比;

式中 EL-拉梅常数;EL=πE'


   3)油膜厚度计算公式
    1>圆柱与圆柱接触
    设圆柱中心处的油膜厚度为h0 ,两圆柱半径分别为R2(R1
    如果取R=R1R2(R1±R2),式中“+”号用于外接,“-”号用于内接,R称为换算曲率半径。可得
    2>圆柱与平面接触
设圆柱中心处的油膜厚度为h0,略去高阶微小项,则在x处的油膜厚度h为
    根据以上这些关系,艾特尔-格鲁宾推论认为润滑油进入接触区后,压力很高,粘度趋于极大值,诱导压力趋于常数。在接触区入口,油膜厚度接近恒定。因此,不论有无油膜存在,其压力分布都由赫兹压应力所决定,弹性圆柱体的变形只取决于接触区内的赫兹压力分布。

    将入口区的间隙形式计算式 代入考虑粘性关系的雷诺方程,进行无量纲化处理,并将边界条件代入,采用数值积分方法对于一系列的数值求出定积分值,再将结果整理成经验关系式,得出著名的Grubin膜厚公式:
    这就是弹流润滑理论中著名的格鲁宾公式。
式中, W-线载荷,W=P/L,P为载荷,L为接触长度;
    u-速度;
    R-换算(当量)曲率半径,R=R1R2/(R1±R2);
    又 G*-材料参数,G*=αE';
    U*-速度参数, U*=η0u/E'R;
    W*-载荷参数,W*=W/E'R;

    上式相当准确地给出了高压区的油膜厚度近似值,通常, 它比测量值约大20%左右。在下列情况下准确度有所降低:
    (1) G<1000,也就是润滑油粘度的压粘系数较小,或材料的弹性模量较低;
    (2)载荷参数 ;
    (3)速度参数较大,以至于入口处润滑油因剪切而发热,使粘度有较大降低;
    (4)供油不足。此外,只考虑了润滑油入口区,没有探讨出口区的情况。尽管如此,格鲁宾理论仍被人们广泛地用于处理其他弹流润滑问题,这种理论为我们提供了一种简单而巧妙地分析弹流润滑的近似方法。

  2.Dowson膜厚公式:
    
    线接触弹流膜厚计算式中,常用的是道森与希金森1961年提出第一个全数值解膜厚公式,1967年提出了修正公式:

 hmin=2.65α0.6(η0U)0.7R0.43E'0.03W-0.13  
   
  
  点接触膜厚公式常用哈姆洛克-道森公式:

         Hmin=3.63U0.68G0.49W-0.073(1-e-0.68k)

其中,k=1.03(Ry/Rx)0.64,Ry/Rx为接触区在y和x方向的曲率半径之比。
资讯录入:设备管理    责任编辑:设备管理 
  • 上一篇资讯:

  • 下一篇资讯:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

    不良信息
    举报中心
    机电之家设备管理网
    致力于机电设备维修与管理技术
    网络110
    报警服务
    服务热线:0571-87774297 传真:0571-87774298 电子邮件:donemi@hz.cn 服务 QQ:66821730
    机电之家(www.jdzj.com)旗下网站 杭州滨兴科技有限公司提供技术支持

    版权所有 Copyright © 机电之家--中国机电行业门户·设备维修与管理

    主办:杭州高新(滨江)机电一体化学会
    浙ICP备05041018号